Size-dependent plastic flow behavior is manifested in nanoindentation, microbending, and pillar-compression experiments and plays a key role in the contact mechanics and friction of rough surfaces. Recent experiments using a hard flat plate to compress single-crystal Au nano-pyramids and others using a Berkovich indenter to indent flat thin films show size scaling into the 100-nm range where existing mechanistic models are not expected to apply. To bridge the gap between single-dislocation nucleation at the 1-nm scale and dislocation-ensemble plasticity at the 1-microm scale, we use large-scale molecular dynamics (MD) simulations to predict the magnitude and scaling of hardness H versus contact size l(c) in nano-pyramids. Two major results emerge: a regime of near-power-law size scaling H approximately l(c)(-eta) exists, with eta(MD) approximately 0.32 compared with eta(expt) approximately 0.75, and unprecedented quantitative and qualitative agreement between MD and experiments is achieved, with H(MD) approximately 4 GPa at l(c) = 36 nm and H(expt) approximately 2.5 GPa at l(c) = 100 nm. An analytic model, incorporating the energy costs of forming the geometrically necessary dislocation structures that accommodate the deformation, is developed and captures the unique magnitude and size scaling of the hardness at larger MD sizes and up to experimental scales while rationalizing the transition in scaling between MD and experimental scales. The model suggests that dislocation-dislocation interactions dominate at larger scales, whereas the behavior at the smallest MD scales is controlled by nucleation over energy barriers. These results provide a basic framework for understanding and predicting size-dependent plasticity in nanoscale asperities under contact conditions in realistic engineered surfaces.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2701003 | PMC |
http://dx.doi.org/10.1073/pnas.0900804106 | DOI Listing |
Clin Orthop Relat Res
January 2025
Department of Orthopaedic Surgery, Mayo Clinic, Phoenix, AZ, USA.
Background: Resilience refers to the ability to adapt or recover from stress. There is increasing appreciation that it plays an important role in wholistic patient-centered care and may affect patient outcomes, including those of orthopaedic surgery. Despite being a focus of the current orthopaedic evidence, there is no strong understanding yet of whether resilience is a stable patient quality or a dynamic one that may be modified perioperatively to improve patient-reported outcome scores.
View Article and Find Full Text PDFSci Adv
January 2025
Department of Electronic and Computer Engineering, Hong Kong University of Science and Technology, Hong Kong, 999077, China.
Tactile interfaces are essential for enhancing human-machine interactions, yet achieving large-scale, precise distributed force sensing remains challenging due to signal coupling and inefficient data processing. Inspired by the spiral structure of and the processing principles of neuronal systems, this study presents a digital channel-enabled distributed force decoding strategy, resulting in a phygital tactile sensing system named PhyTac. This innovative system effectively prevents marker overlap and accurately identifies multipoint stimuli up to 368 regions from coupled signals.
View Article and Find Full Text PDFNeurosurg Rev
January 2025
Department of Neurosurgery, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran.
Traumatic Brain Injury (TBI) is a major cause of death, disability, and healthcare expenses worldwide. Decompressive craniectomy (DC) is a critical surgery used when there is uncontrollable swelling in the brain following a TBI. Research has shown that 27.
View Article and Find Full Text PDFJ Biomed Mater Res B Appl Biomater
February 2025
Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Ege University, Izmir, Turkey.
Microfluidics-based droplets have emerged as a powerful technology for biomedical research, offering precise control over droplet size and structure, optimal mixing of solutions, and prevention of cross-contamination. It is a major branch of microfluidic technology with applications in diagnostic testing, imaging, separation, and gene amplification. This review discusses the different aspects of microfluidic devices, droplet generation techniques, droplet types, and the production of micro/nano particles, along with their advantages and limitations.
View Article and Find Full Text PDFFront Psychol
January 2025
Yangtze Normal University, Fuling District, China.
The Bergen Facebook addiction scale (BFAS) is a screening instrument frequently used to evaluate Facebook addiction. However, its reliability varies considerably across studies. This study aimed to evaluate the reliability of the BFAS and its adaptation, the Bergen Social Media Addiction Scale (BSMAS), and to identify which study characteristics are associated with this reliability.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!