The neurodegenerative disorder spinal and bulbar muscular atrophy or Kennedy disease is caused by a CAG trinucleotide repeat expansion within the androgen receptor (AR) gene. The resulting expanded polyglutamine tract in the N-terminal region of the receptor renders AR prone to ligand-dependent misfolding and formation of oligomers and aggregates that are linked to neuronal toxicity. How AR misfolding is influenced by post-translational modifications, however, is poorly understood. AR is a target of SUMOylation, and this modification inhibits AR activity in a promoter context-dependent manner. SUMOylation is up-regulated in response to multiple forms of cellular stress and may therefore play an important cytoprotective role. Consistent with this view, we find that gratuitous enhancement of overall SUMOylation significantly reduced the formation of polyglutamine-expanded AR aggregates without affecting the levels of the receptor. Remarkably, this effect requires SUMOylation of AR itself because it depends on intact AR SUMOylation sites. Functional analyses, however, indicate that the protective effects of enhanced AR SUMOylation are not due to alterations in AR transcriptional activity because a branched protein structure in the appropriate context of the N-terminal region of AR is necessary to antagonize aggregation but not for inhibiting AR transactivation. Remarkably, small ubiquitin-like modifier (SUMO) attenuates AR aggregation through a unique mechanism that does not depend on critical features essential for its interaction with canonical SUMO binding motifs. Our findings therefore reveal a novel function of SUMOylation and suggest that approaches that enhance AR SUMOylation may be of clinical use in polyglutamine expansion diseases.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2755854PMC
http://dx.doi.org/10.1074/jbc.M109.011494DOI Listing

Publication Analysis

Top Keywords

small ubiquitin-like
8
ubiquitin-like modifier
8
modifier sumo
8
androgen receptor
8
n-terminal region
8
sumoylation
8
sumo modification
4
modification androgen
4
receptor
4
receptor attenuates
4

Similar Publications

Background: This study investigates the role of small ubiquitin-like modifier (SUMO)-specific peptidase 5 (SENP5), a key regulator of SUMOylation, in esophageal squamous cell carcinoma (ESCC), a lethal disease, and its underlying molecular mechanisms.

Methods: Differentially expressed genes between ESCC mouse oesophageal cancer tissues and normal tissues were analysed via RNA-seq; among them, SENP5 expression was upregulated, and this gene was selected for further analysis. Immunohistochemistry and western blotting were then used to validate the increased protein level of SENP5 in both mouse and human ESCC samples.

View Article and Find Full Text PDF

The intricate relationship between SUMOylation and gliomas: a review with a perspective on natural compounds.

Nat Prod Res

January 2025

Programa de Pós-Graduação em Biologia Celular e do Desenvolvimento, Universidade Federal de Santa Catarina, Florianópolis, Brazil.

Gliomas are tumours that affect the nervous system, with glioblastoma, also known as grade IV astrocytoma, being the most aggressive type, associated with poor prognosis. Glioblastoma is characterised by its highly invasive nature, rapid growth, and resistance to conventional chemotherapy and radiation treatments, resulting in a median survival of about 14 months. To improve patient outcomes, novel therapeutic approaches are needed.

View Article and Find Full Text PDF

A synthetic biology approach for identifying de-SUMOylation enzymes of substrates.

J Integr Plant Biol

January 2025

Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China.

A synthetic biology approach using a robust reconstitution system in Escherichia coli enables the identification of plant ubiquitin-like proteases responsible for removing the small ubiquitin-like modifier (SUMO) post-translational modifications from specific protein substrates.

View Article and Find Full Text PDF

Deciphering the endogenous SUMO-1 landscape: a novel combinatorial peptide enrichment strategy for global profiling and disease association.

Chem Sci

December 2024

State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 P. R. China

Small ubiquitin-like modifier (SUMO) plays a pivotal role in diverse cellular processes and is implicated in diseases such as cancer and neurodegenerative disorders. However, large-scale identification of endogenous SUMO-1 faces challenges due to limited enrichment methods and its lower abundance compared to SUMO-2/3. Here we propose a novel combinatorial peptide strategy, combined with anti-adhesive polymer development, to enrich endogenous SUMO-1 modified peptides, revealing a comprehensive SUMOylation landscape.

View Article and Find Full Text PDF

Reduction of glucose transporter 1 (GLUT1), even deletion, may results in cartilage fibrosis and osteoarthritis. This study aims to investigate the SUMOylation of GLUT1 in osteoarthritis through small ubiquitin-like modifier 1(SUMO1), and explore the role of SUMOylated GLUT1 in glycometabolism, proliferation and apoptosis in chondrocytes. Human chondrocytes were incubated with 10 ng/mL of IL-1β to mimic osteoarthritis in vitro.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!