Production of self-assembling biomaterials for tissue engineering.

Trends Biotechnol

Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK.

Published: July 2009

Self-assembling peptide-based biomaterials are being developed for use as 3D tissue engineering scaffolds and for therapeutic drug-release applications. Chemical synthesis provides custom-made peptides in small quantities, but production approaches based upon transgenic organisms might be more cost-effective for large-scale peptide production. Long lead times for developing appropriate animal clones or plant lines and potential negative public opinion are obstacles to these routes. Microbes, particularly safe organisms used in the food industry, offer a more rapid route to the large-scale production of recombinant self-assembling biomaterials. In this review, recent advances and challenges in the recombinant production of collagen, elastin and de novo designed self-assembling peptides are discussed.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2828541PMC
http://dx.doi.org/10.1016/j.tibtech.2009.04.002DOI Listing

Publication Analysis

Top Keywords

self-assembling biomaterials
8
tissue engineering
8
production
5
production self-assembling
4
biomaterials tissue
4
engineering self-assembling
4
self-assembling peptide-based
4
peptide-based biomaterials
4
biomaterials developed
4
developed tissue
4

Similar Publications

A Recombinant Human Collagen and RADA-16 Fusion Protein Promotes Hemostasis and Rapid Wound Healing.

ACS Appl Bio Mater

December 2024

Provincial Key Laboratory of Biotechnology of Shaanxi, Key Laboratory of Resource Biology and Modern Biotechnology in Western China, Faculty of Life Science, Northwest University, 229 North Taibai Road, Xi'an, Shaanxi Province 710069, China.

In this study, we designed a fusion protein, rhCR, by combining human collagen with the self-assembling peptide RADA-16 using genetic engineering technology. The rhCR protein was successfully expressed in . The rhCR can self-assemble into a three-dimensional nanofiber network under physiological conditions.

View Article and Find Full Text PDF

Proteolysis targeting chimeras (PROTACs) hold immense promise for targeted protein degradation; however, challenges such as off-target effects, poor drug-likeness properties, and the "hook effect" remain. This study introduces Nano-Click-formed PROTACs (Nano-CLIPTACs) for precise tumor protein degradation in vivo. Traditional PROTACs with high molecular weight were first divided into two smaller druglike precursors capable of self-assembling to form functional PROTACs through a bioorthogonal reaction.

View Article and Find Full Text PDF

Advanced chitin-based composite hydrogels enabled by quercetin-mediated assembly for multifunctional applications.

Int J Biol Macromol

December 2024

Jiangxi Provincial Engineering Research Center of Bamboo Advanced Materials and Conversion, Gannan Normal University, Ganzhou 341000, China. Electronic address:

Natural building blocks like chitins for self-assembling into complex materials have garnered significant interest owing to the inherent and diverse functionalities. However, challenges persist in the assembly of chitin-based composites, primarily stemming from chitin's poor solubility and compatibility. Herein, a quercetin-mediated multiple crosslinking strategy was developed to enhance compatibility by quercetin-mediated interfacial interactions between chitin and inorganic materials, achieving a series of chitin-based composite hydrogels with high performances.

View Article and Find Full Text PDF

Co-assembled supramolecular hydrogel of asiaticoside and Panax notoginseng saponins for enhanced wound healing.

Eur J Pharm Biopharm

December 2024

Chongqing Key Laboratory of Chinese Medicine New Drug Screening, Southwest University, Chongqing, China. Electronic address:

Self-assembling natural drug hydrogels have emerged as promising biomaterials for scalable and customizable drug delivery systems attributed to their inherent biocompatibility and biodegradability. Asiaticoside (AS), a bioactive compound derived from Centella asiatica (L.) Urb.

View Article and Find Full Text PDF

Diffusion model assisted designing self-assembling collagen mimetic peptides as biocompatible materials.

Brief Bioinform

November 2024

Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214222, China.

Collagen self-assembly supports its mechanical function, but controlling collagen mimetic peptides (CMPs) to self-assemble into higher-order oligomers with numerous functions remains challenging due to the vast potential amino acid sequence space. Herein, we developed a diffusion model to learn features from different types of human collagens and generate CMPs; obtaining 66% of synthetic CMPs could self-assemble into triple helices. Triple-helical and untwisting states were probed by melting temperature (Tm); hence, we developed a model to predict collagen Tm, achieving a state-of-art Pearson's correlation (PC) of 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!