Self-assembling peptide-based biomaterials are being developed for use as 3D tissue engineering scaffolds and for therapeutic drug-release applications. Chemical synthesis provides custom-made peptides in small quantities, but production approaches based upon transgenic organisms might be more cost-effective for large-scale peptide production. Long lead times for developing appropriate animal clones or plant lines and potential negative public opinion are obstacles to these routes. Microbes, particularly safe organisms used in the food industry, offer a more rapid route to the large-scale production of recombinant self-assembling biomaterials. In this review, recent advances and challenges in the recombinant production of collagen, elastin and de novo designed self-assembling peptides are discussed.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2828541 | PMC |
http://dx.doi.org/10.1016/j.tibtech.2009.04.002 | DOI Listing |
ACS Appl Bio Mater
December 2024
Provincial Key Laboratory of Biotechnology of Shaanxi, Key Laboratory of Resource Biology and Modern Biotechnology in Western China, Faculty of Life Science, Northwest University, 229 North Taibai Road, Xi'an, Shaanxi Province 710069, China.
In this study, we designed a fusion protein, rhCR, by combining human collagen with the self-assembling peptide RADA-16 using genetic engineering technology. The rhCR protein was successfully expressed in . The rhCR can self-assemble into a three-dimensional nanofiber network under physiological conditions.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
December 2024
China Pharmaceutical University, Department of Medicinal Chemistry, 211198, Nanjing, CHINA.
Proteolysis targeting chimeras (PROTACs) hold immense promise for targeted protein degradation; however, challenges such as off-target effects, poor drug-likeness properties, and the "hook effect" remain. This study introduces Nano-Click-formed PROTACs (Nano-CLIPTACs) for precise tumor protein degradation in vivo. Traditional PROTACs with high molecular weight were first divided into two smaller druglike precursors capable of self-assembling to form functional PROTACs through a bioorthogonal reaction.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Jiangxi Provincial Engineering Research Center of Bamboo Advanced Materials and Conversion, Gannan Normal University, Ganzhou 341000, China. Electronic address:
Natural building blocks like chitins for self-assembling into complex materials have garnered significant interest owing to the inherent and diverse functionalities. However, challenges persist in the assembly of chitin-based composites, primarily stemming from chitin's poor solubility and compatibility. Herein, a quercetin-mediated multiple crosslinking strategy was developed to enhance compatibility by quercetin-mediated interfacial interactions between chitin and inorganic materials, achieving a series of chitin-based composite hydrogels with high performances.
View Article and Find Full Text PDFEur J Pharm Biopharm
December 2024
Chongqing Key Laboratory of Chinese Medicine New Drug Screening, Southwest University, Chongqing, China. Electronic address:
Self-assembling natural drug hydrogels have emerged as promising biomaterials for scalable and customizable drug delivery systems attributed to their inherent biocompatibility and biodegradability. Asiaticoside (AS), a bioactive compound derived from Centella asiatica (L.) Urb.
View Article and Find Full Text PDFBrief Bioinform
November 2024
Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214222, China.
Collagen self-assembly supports its mechanical function, but controlling collagen mimetic peptides (CMPs) to self-assemble into higher-order oligomers with numerous functions remains challenging due to the vast potential amino acid sequence space. Herein, we developed a diffusion model to learn features from different types of human collagens and generate CMPs; obtaining 66% of synthetic CMPs could self-assemble into triple helices. Triple-helical and untwisting states were probed by melting temperature (Tm); hence, we developed a model to predict collagen Tm, achieving a state-of-art Pearson's correlation (PC) of 0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!