In the present study, low doses (0.5, 1, and 2 microM) of cobalt protoporphyrin (CoPP), but not ferric protoporphyrin (FePP) or tin protoporphyrin (SnPP), significantly inhibited lipopolysaccharide (LPS) or lipoteichoic acid (LTA)-induced inducible nitric oxide (iNOS) and nitric oxide (NO) production with an increase in heme oxygenase 1 (HO-1) protein in RAW264.7 macrophages under serum-free conditions. IC(50) values of CoPP inhibition of NO and iNOS protein individually induced by LPS and LTA were around 0.25 and 1.7 microM, respectively. This suggests that CoPP is more sensitive at inhibiting NO production than iNOS protein in response to separate LPS and LTA stimulation. NO inhibition and HO-1 induction by CoPP were blocked by the separate addition of fetal bovine serum (FBS) and bovine serum albumin (BSA). Decreasing iNOS/NO production and increasing HO-1 protein by CoPP were observed with CoPP pretreatment, CoPP co-treatment, and CoPP post-treatment with LPS and LTA stimulation. LPS- and LTA-induced NOS/NO productions were significantly suppressed by the JNK inhibitor, SP600125, but not by the ERK inhibitor, PD98059, through a reduction in JNK protein phosphorylation. Transfection of a dominant negative JNK plasmid inhibited LPS- and LTA-induced iNOS/NO production and JNK protein phosphorylation, suggesting that JNK activation is involved in LPS- and LTA-induced iNOS/NO production. Additionally, CoPP inhibition of LPS- and LTA-induced JNK, but not ERK, protein phosphorylation was identified in RAW264.7 cells. Furthermore, CoPP significantly reduced NO production in a cell-mediated, but not cell-free, iNOS enzyme activity assay accompanied by HO-1 induction. However, attenuation of HO-1 protein stimulated by CoPP via transfection of HO-1 siRNA did not affect NO's inhibition of CoPP against LPS stimulation. CoPP effectively suppressing LPS- and LTA-induced iNOS/NO production through blocking JNK activation and iNOS enzyme activity via a HO-1 independent manner is first demonstrated herein.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.cbi.2009.01.004 | DOI Listing |
Andrology
July 2024
Department of Biophysics and Pharmacology, Institute of Biosciences of Botucatu, São Paulo State University, Botucatu, São Paulo, Brazil.
Background: Region-specific immune environments in the epididymis influence the immune responses to uropathogenic Escherichia coli (UPEC) infection, a relevant cause of epididymitis in men. Toll-like receptors (TLRs) are essential to orchestrate immune responses against bacterial infections. The epididymis displays region-specific inflammatory responses to bacterial-derived TLR agonists, such as lipopolysaccharide (LPS; TLR4 agonist) and lipoteichoic acid (LTA; TLR2/TLR6 agonist), suggesting that TLR-associated signaling pathways could influence the magnitude of inflammatory responses in epididymitis.
View Article and Find Full Text PDFJ Agric Food Chem
October 2023
Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun 130062, Jilin, China.
Mastitis affects the milk quality and yield and is the most expensive disease in dairy cows. Elucidation of the pathogenesis of mastitis is of great importance for disease control. As a medium of intercellular communication, exosomes play key roles in various inflammatory diseases by regulating macrophage polarization.
View Article and Find Full Text PDFMicrosc Microanal
September 2022
Department of Genetics, Faculty of Veterinary Medicine, University of Erciyes, 38030 Kayseri, Turkey.
Toll-like receptor (TLR)-mediated inflammatory processes play a critical role in the innate immune response during the initial interaction between the infecting microorganism and immune cells. This study aimed to investigate the possible microanatomical and histological differences in mandibular and bronchial lymph nodes in Akkaraman and Romanov lambs induced by lipopolysaccharide (LPS) and lipoteichoic acid (LTA) and study the gene, protein, and immunoexpression levels of , () and tumor necrosis factor-α () that are involved in the immune system. Microanatomical examinations demonstrated more intense lymphocyte infiltration in the bronchial lymph nodes of Akkaraman lambs in the LPS and LTA groups compared to Romanov lambs.
View Article and Find Full Text PDFCell Stress Chaperones
September 2022
Department of Medical Biochemistry and Hematology, Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia.
Cigarette smoke is a major risk factor for chronic obstructive pulmonary disease (COPD), leading to chronic inflammation, while bacterial components lipopolysaccharide (LPS) and lipoteichoic acid (LTA) are often present in airways of COPD patients, especially during exacerbations.We hypothesised that extracellular heat shock protein 70 (eHsp70), a damage-associated molecular pattern elevated in serum of COPD patients, induces inflammation and alters cigarette smoke and LPS/LTA-induced inflammatory effects in the airway epithelium.We used 16HBE cells exposed to recombinant human (rh)Hsp70 and its combinations with cigarette smoke extract (CSE), LPS or LTA to investigate those assumptions, and we determined pro-inflammatory cytokines' secretion as well as TLR2 and TLR4 gene expression.
View Article and Find Full Text PDFJ Glob Antimicrob Resist
September 2022
Department of Biomolecular Health Sciences, Division Infectious Diseases and Immunology, Section Immunology, Utrecht University, Utrecht, The Netherlands. Electronic address:
Objectives: Our group recently developed a new group of antimicrobial peptides termed PepBiotics, of which peptides CR-163 and CR-172 showed optimized antibacterial activity against Pseudomonas aeruginosa and Staphylococcus aureus without inducing antimicrobial resistance. In this study, the antibacterial mechanism of action and the immunomodulatory activity of these two PepBiotics was explored.
Methods: RAW264.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!