Harmaline-induced tremor in rodents is a model of essential tremor. We utilized a novel assay to quantify tremor activity in mice and found that tremor activity was dependent on harmaline dose. The first-line clinical essential tremor treatments propranolol, primidone and gabapentin and gamma-hydroxybutyrate (GHB) significantly attenuated harmaline-induced tremor. The anticonvulsants valproate and carbamazepine and the mood stabilizer lithium suppressed harmaline-induced tremor. The gamma-amino-butyric acid (GABA) receptor subtype A receptor agonist muscimol attenuated harmaline-induced tremor. By contrast, the GABA(B) receptor agonist R-baclofen increased tremor at the lowest dose tested, but had no effects at higher doses. Administration of the non-competitive N-methyl-D-aspartate (NMDA) receptor antagonists phencyclidine or 5R,10S-(+)-5-methyl-10,11-dihydro-5H-dibenzo(a,d)cyclohepten-5,10-imine hydrogen maleate (MK-801) attenuated harmaline-induced tremor. The competitive NMDA antagonist D-4-[(2E)-3-phosphono-2-propenyl]-2-piperazinecarboxylic acid (d-CPPene) dose-dependently blocked harmaline-induced tremor, as did the alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor antagonist 2,3-dioxo-6-nitro-1,2,3,4-tetrahydrobenzo[f]quinoxaline-7-sulfonamide disodium salt (NBQX). The metabotropic glutamate subtype 5 (mGlu5) receptor antagonist 6-methyl-2-(phenylethynyl)pyridine (MPEP) was inactive against tremor. The dopamine reuptake inhibitor GBR12909 and the dopamine D(1)/D(2) receptor agonist apomorphine attenuated harmaline-induced tremor. Follow-up studies indicated that dopamine D(2)/D(3) but not dopamine D(1) receptor activation likely mediates the effects of apomorphine and GBR12909. Administration of compounds with sedative side-effects had no effect on tremor activity. In summary, the present data confirm the pharmacological validity of harmaline-induced tremor in mice, quantified via a novel assay, as an animal model of essential tremor. Further, these data provide additional evidence for the roles of ionotropic glutamate, GABA(A) and dopamine D(2)/D(3) receptors in the neurobiology of harmaline-induced tremor.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ejphar.2009.05.031 | DOI Listing |
Brain Behav
January 2025
Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.
Purpose: Essential tremor (ET) is a prevalent movement disorder, yet current therapeutic options remain limited. Emerging evidence implicates leucine-rich repeat and immunoglobulin-like domain-containing protein (Lingo-1) and neuroinflammation in the pathophysiology of ET. This study aimed to investigate whether agmatine, a biogenic amine neuromodulator attenuates tremors and modulates the expression of Lingo-1 and proinflammatory markers in a rodent model of ET.
View Article and Find Full Text PDFExp Neurol
December 2024
Jazz Pharmaceuticals Ltd., Sovereign House, Cambridge CB24 9BZ, UK.
Background: Essential tremor (ET) is one of the most prevalent movement disorders; despite this, there remains an unmet need for novel therapies. The treatment of rats with harmaline modulates the rhythmicity of inferior olivary neurons, resulting in generalized tremor with a frequency of 9-12 Hz in rats, comparable to that of human ET (4-12 Hz).
Purpose: Interestingly, cannabinoids reduce tremor, therefore we have assessed the cannabinoid nabiximols (NBX; marketed as Sativex) a complex botanical drug mixture, in the harmaline-rat model of ET.
IBRO Neurosci Rep
December 2024
Kerman Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.
Essential tremor (ET) is one of the most common motor disorders with debilitating effects on the affected individuals. The endocannabinoid system is widely involved in cerebellar signaling. Therefore, modulation of cannabinoid-1 receptors (CB1Rs) has emerged as a novel target for motor disorders.
View Article and Find Full Text PDFSci Rep
April 2024
Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, 76198-13159, Iran.
Essential tremor (ET) is a neurological disease that impairs motor and cognitive functioning. A variant of the Lingo-1 genetic locus is associated with a heightened ET risk, and increased expression of cerebellar Lingo-1. Lingo-1 has been associated with neurodegenerative processes; however, neuroprotection from ET-associated degeneration can be conferred by the protein Sirt1.
View Article and Find Full Text PDFNeurotoxicology
December 2023
Department of Physiology and Biophysics, College of Medicine, Howard University, Washington, DC 20059, USA.
Harmaline is one of the β-carboline derivative compounds that is widely distributed in the food chain and human tissues. Harmine, a dehydrogenated form of harmaline, appeared to have a higher concentration in the brain, and appeared to be elevated in essential tremor (ET) and Parkinson's disease. Exogenous harmaline exposure in high concentration has myriad consequences, including inducing tremor, and causing neurodegeneration of Purkinje cells in the cerebellum.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!