Diabetes mellitus is a metabolic disorder characterized by elevated level of glucose in the blood. Hyperglycaemia perturbs the critical balance between oxidative stress and anti-oxidant defence mechanisms in the body and thereby alters the response of biological system towards various toxic chemicals. Cyclophosphamide (CP) is a widely prescribed anticancer drug, well-known genotoxic agent as well as used in the development of immunocompromised animal models. The present study investigated the modulating effect of diabetes on the cyclophosphamide-induced cytotoxicity and genotoxicity. The study was performed on male Sprague-Dawley rats (200 ± 10 g). Cyclophosphamide (10 mg/kg) was administered five consecutive days in a week for 3 weeks to both control and diabetic rats. Thiobarbituric acid reactive substances (TBARS) levels were measured in the plasma, liver, kidney and lung tissues. DNA damaging potential of cyclophosphamide under diabetic condition was evaluated using comet and halo assay as an endpoint. To further ascertain the mode of cell death, terminal deoxynucleotidyl transferase-mediated dUTP nick end labelling (TUNEL) assay and immunohistochemical evaluation of p53 was performed. Significant increase in DNA damage was revealed by the comet assay parameters, halo assay indicated the level of cytotoxicity and the oxidative stress was measured using the TBARS assay in the diabetic rats receiving cyclophosphamide treatment. The toxic effects were more prominent in diabetic animals as compared to non-diabetic rats. Cyclophosphamide treatment and diabetic condition per se led to increase in the p53 + and TUNEL + cells in the liver and kidney of rats. Under diabetic condition, further increase in the p53 + and TUNEL + cells was observed in response to cyclophosphamide. In the present study, we report that hyperglycaemic condition exaggerates the cyclophosphamide-induced toxicity and the response was found to be tissue specific.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1742-7843.2009.00433.x | DOI Listing |
Sci Rep
January 2025
Department of Nutritional Biochemistry, University of Hohenheim, Garbenstraße 30, 70599, Stuttgart, Germany.
Non-nutritive sweeteners (NNS) are widely employed in foodstuffs. However, it has become increasingly evident that their consumption is associated with bacterial dysbiosis, which, in turn, is linked to several health conditions, including a higher risk of type 2 diabetes and cancer. Among the NNS, stevia, whose main component is rebaudioside A (rebA), is gaining popularity in the organic food market segment.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Clinical Physiology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13, 10-719, Olsztyn, Poland.
Studies conducted so far have shown that nano- and microplastic may disturb the intestinal microenvironment by interacting with the intestinal epithelium and the gut microbiota. Depending on the research model used, the effect on the microbiome is different-an increase or decrease in selected taxa resulting in the development of dysbiosis. Dysbiosis may be associated with intestinal inflammation, development of mental disorders or diabetes.
View Article and Find Full Text PDFMed Chem
January 2025
School of Pharmacy, Changzhou University, Changzhou, 213164, China.
Catechins, the main active components of tea polyphenols, boast remarkable antioxidant activities because of their unique structures. This translates to a range of potential health benefits, including fighting antibacterial, inflammation, and even cancers. However, extracting these beneficial compounds can be tricky as they're prone to degradation.
View Article and Find Full Text PDFCell Mol Life Sci
January 2025
Institute of Medicine, Chung Shan Medical University, No. 110, Sec. 1, Jianguo N. Rd, Taichung City, 402, Taiwan.
Background: Diabetes is a primary contributor to diabetic cardiomyopathy (DbCM), which is marked by metabolic imbalances such as elevated blood glucose and lipid levels, leading to significant structural and functional alterations in the myocardium. Elevated free fatty acids (FFAs) and hyperglycemia play critical roles in DbCM development, with FFAs inducing insulin resistance in cardiomyocytes and promoting lipid accumulation, resulting in oxidative stress and fibrosis. Current research suggests that glucagon-like peptide-1 (GLP-1) receptor agonists may effectively mitigate DbCM, although an effective treatment for this condition remains elusive, and the precise mechanisms of this protective effect are not fully understood.
View Article and Find Full Text PDFBMJ Open
January 2025
Diabetes Care Unit, Caen University Hospital, Caen cedex 09, France.
Introduction: Glycated haemoglobin (HbA1c) is currently the gold standard for assessing glycaemic control in diabetes, given the established relationship with microvascular and macrovascular complications in this condition. However, HbA1c is affected by non-glycaemic factors, while also failing to provide data on hypoglycaemic exposure and glucose variability, which are associated with adverse vascular outcomes. Continuous glucose monitoring (CGM)-derived glucose metrics provide a more comprehensive assessment of glycaemia, but their role in predicting future vascular complications remains unclear.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!