Heterotrophic microorganisms are widely recognized as crucial components of ecosystems; yet information on their community structure and dynamics in benthic freshwater habitats is notably scarce. Using denaturing gradient gel electrophoresis (DGGE), we determined the composition of bacterial and fungal communities in a freshwater marsh over four seasons. DGGE revealed diverse bacterial communities in four contrasting microhabitats. The greatest compositional differences emerged between water-column and surface-associated bacteria, although communities associated with sediment also differed from those on plant litter and epiphytic biofilms. Sequences of bacterial clones derived from DGGE bands belonged to the Alphaproteobacteria (31%), Actinobacteria (19%) and Bacteriodetes (19%). Betaproteobacteria were notably absent. Fungal clones obtained from leaf litter were mainly Ascomycota, but two members of the Basidiomycota were also identified. Overall, habitat type was the most important factor explaining variation in bacterial communities among samples, whereas temporal patterns in community composition were less pronounced in spite of large seasonal variation in environmental conditions such as temperature. The observed differences among bacterial communities in different microhabitats were not caused by random variation, but rather appeared to be determined by habitat characteristics, as evidenced by largely congruent community profiles of replicate samples taken at 10-100 m distances within the marsh.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1574-6941.2009.00692.x | DOI Listing |
Funct Integr Genomics
January 2025
Department of Zoology, University of Gour Banga, Malda, 732103, India.
Rice (Oryza sativa L.), Poaceae family, forms staple diet of half of world's population, and brinjal (Solanum melongena L.), an important solanaceous crop, are consumed worldwide.
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
The plastisphere, defined as the ecological niche for microbial colonization of plastic debris, has been recognized as a hotspot of pathogenic and antibiotic-resistant bacteria. However, the interactions between bacteria and phages facilitated by the plastisphere, as well as their impact on microbial risks to public health, remain unclear. Here, we analyzed public metagenomic data from 180 plastisphere and environmental samples, stemming from four different habitats and two plastic types (biodegradable and nonbiodegradable plastics) and obtained 611 nonredundant metagenome-assembled genomes (MAGs) and 4061 nonredundant phage contigs.
View Article and Find Full Text PDFFront Vet Sci
January 2025
Associated Tissue Bank, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, Košice, Slovakia.
Equine pastern dermatitis (EPD) is a multifactorial disease with a change in the skin microbiome. The present study monitored the influence of Biocenol™ 4/8 D37 CCM 9015 stabilized on alginite on the skin microbiota of healthy horses and model patients with EPD. Based on clinical signs, EPD lesions were identified as exudative or proliferative forms.
View Article and Find Full Text PDFFront Plant Sci
January 2025
Institute of Plant Protection, Sichuan Academy of Agricultural Sciences, Chengdu, China.
Rhizosphere microbiomes are constantly mobilized during plant-pathogen interactions, and this, in turn, affects their interactions. However, few studies have examined the activities of rhizosphere microbiomes in plants with different susceptibilities to soil-borne pathogens, especially those that cause clubroot disease. In this study, we compared the rhizosphere bacterial community in response to infection of among the four different clubroot susceptibility cultivars of oilseed rape ().
View Article and Find Full Text PDFFront Microbiol
January 2025
DeepBlue Academy of Sciences, Shanghai, China.
Introduction: The salinization of coastal soils is a primary cause of global land degradation. The aim of this study was to evaluate the effect of organic amendment on the soil microbial community within a saline gradient.
Methods: The study was designed with five levels of electrical conductivity (EC): 0.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!