Expression of the smooth muscle alpha-actin gene in growth-activated vascular smooth muscle cells and stromal fibroblasts is negatively regulated by members of the Pur family of single-stranded DNA/RNA-binding proteins. In particular, Puralpha and Purbeta are postulated to repress transcription by forming helix-destabilizing complexes with the sense strand of an asymmetric polypurine-polypyrimidine tract containing a canonical MCAT enhancer motif in the 5' region of the gene. Herein, we establish the mechanism of Purbeta binding to the purine-rich strand of the enhancer using quantitative methods and purified components. Initial evaluation of DNA-binding specificity and equilibrium stoichiometry via colorimetric-, autoradiographic-, and fluorescence-based assays suggested that Purbeta interacts with two distinct G/A-rich sites within the nominal single-stranded enhancer element to form a high-affinity 2:1 protein:DNA complex. Statistical mechanical analyses of band shift titrations of the nominal element in conjunction with DNase I footprint titrations of the extended smooth muscle alpha-actin 5'-flanking region demonstrated that assembly of the nucleoprotein complex likely occurs in a sequential, cooperative, and monomer-dependent fashion. Resolution of the microscopic energetics of the system indicated that monomer association with two nonidentical sites flanking the core MCAT motif accounts for the majority of the intrinsic binding affinity of Purbeta with intersite cooperativity contributing an approximately 12-fold increase to the stability of the nucleoprotein complex. These findings offer new insights into the mechanism, energetics, and sequence determinants of Purbeta repressor binding to a biologically relevant, contractile phenotype-regulating cis-element while also revealing the thermodynamic confines of putative Purbeta-mediated effects on DNA structure.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2752054 | PMC |
http://dx.doi.org/10.1021/bi900708j | DOI Listing |
The maintenance of a healthy epithelial-endothelial juxtaposition requires cross-talk within glomerular cellular niches. We sought to understand the spatially-anchored regulation and transition of endothelial and mesangial cells from health to injury in DKD. From 74 human kidney samples, an integrated multi-omics approach was leveraged to identify cellular niches, cell-cell communication, cell injury trajectories, and regulatory transcription factor (TF) networks in glomerular capillary endothelial (EC-GC) and mesangial cells.
View Article and Find Full Text PDFJ Orthop Case Rep
January 2025
Department of Orthopaedics, Mahatma Gandhi Medical College and Hospital, Jaipur, Rajasthan, India.
Introduction: Low-grade myofibroblastic sarcoma (LGMS) is an atypical and extremely infrequent type of tumor, primary mass being usually present in subcutaneous and soft tissue. Bony involvement is very rare. It has a very high chance of recurrence locally due to its aggressive biological behavior, metastasis in other parts of body is rarely seen.
View Article and Find Full Text PDFJ Mol Cell Cardiol Plus
December 2024
Department of Pathology, Amsterdam University Medical Center (AUMC), location AMC and VUmc, Amsterdam, the Netherlands.
Background And Objectives: Structural and functional changes in the intramyocardial microcirculation increase the risk of myocardial infarction (MI). This study investigated intramyocardial perivascular fibrosis and pro-fibrotic cellular transitions in deceased acute and subacute MI patients to explore their involvement in the pathogenesis of MI.
Methods: Left ventricular tissue (LV) was obtained from the infarction area of autopsied patients with acute-phase MI (3-6 h; = 24), subacute-phase MI (5-14 days; = 12), and noninfarcted controls ( = 14).
J Recept Signal Transduct Res
January 2025
Department of Pharmaceutical Sciences, Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, USA.
The proliferative effects of angiotensin (Ang) II in vascular smooth muscle cells (VSMCs) through its ability to stimulate extracellular signal-regulated kinases 1 and 2 (ERK1/2) pathway have been established. The main goal of this study was to explore whether Ang III induces ERK1/2 MAPK and VSMC proliferation in cultured Wistar VSMCs. Further, the Ang III actions were compared to those observed in VSMCs derived from the spontaneously hypertensive rat (SHR).
View Article and Find Full Text PDFFolia Histochem Cytobiol
January 2025
Department of Clinical Laboratory, Guangzhou Twelfth People's Hospital, Guangzhou, China.
Introduction: . Pyroptosis is closely related to many chronic diseases including atherosclerosis, but the potential pathomechanisms are still unclear. This research aimed to explore how lncRNAs may contribute to pyroptosis and the potential mechanisms.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!