The aim of this study was to develop a three-dimensional (3D) finite element (FE) model of a sound extracted human second premolar from micro-CT data using commercially available software tools. A detailed 3D FE model of the tooth could be constructed and was experimentally validated by comparing strains calculated in the FE model with strain gauge measurement of the tooth under loading. The regression coefficient and its standard error in the regression analysis between strains calculated by the FE model and measured with strain gauge measurement were 0.82 and 0.06, respectively, and the correlation coefficient was found to be highly significant. These results suggested that an FE model reconstructed from micro-CT data could be used as a valid model to estimate the actual strains with acceptable accuracy.

Download full-text PDF

Source
http://dx.doi.org/10.4012/dmj.28.219DOI Listing

Publication Analysis

Top Keywords

three-dimensional finite
8
finite element
8
micro-ct data
8
strains calculated
8
calculated model
8
strain gauge
8
gauge measurement
8
model
6
element modeling
4
modeling images
4

Similar Publications

The CRTS (China Railway Track System) II slab ballastless track is widely utilized in high-speed railway construction owing to its excellent structural integrity. However, its interfacial performance deteriorates under high-temperature conditions, leading to significant damage in structural details. Furthermore, the evolution of its performance under these conditions has not been comprehensively studied.

View Article and Find Full Text PDF

In this paper, we propose a novel structure of anisotropic graphene-based hyperbolic metamaterial (AGHMM) sandwiched as a defect between two one-dimensional photonic crystals (PCs) in the terahertz (THz) region. The proposed structure is numerically simulated and analyzed using the transfer matrix method, effective medium theory and three-dimensional finite-difference time-domain. The defect layer of AGHMM consists of graphene sheets separated by subwavelength dielectric spacers.

View Article and Find Full Text PDF

This study employed numerical simulation to investigate the dynamic response characteristics of open-web girders subjected to proximity blast loading and to compare these characteristics with those of solid-web girders. The research utilized the Coupled Eulerian-Lagrangian (CEL) method for simulation, effectively combining the advantages of both Eulerian and Lagrangian approaches. This method mitigated issues related to mesh distortion while accurately modeling the damage inflicted by blast loads on the structures.

View Article and Find Full Text PDF

Objective: Percutaneous Endoscopic Transforaminal Discectomy (PETD) is recognized as the leading surgical intervention for lumbar disc herniation (LDH). Moreover, Body Mass Index (BMI) has been established as an independent risk factor for disc reherniation post-PETD. Furthermore, there is a lack of studies investigating the biomechanical changes in the disc post-PETD in relation to diverse BMI levels.

View Article and Find Full Text PDF

In this work, a series of three-dimensional (3D) SERS substrate were successfully fabricated by assembling silver nanoparticles (AgNPs) onto a porous gelatin sponge (GS) for highly sensitive thiram residues detection in vegetables. These 3D micro-nanostructures could induce the sufficient surface plasmon resonance (SPR) effect of noble metals on their surface and achieve high enrichment of pollutant molecules. As crystal violet (CV) was used as a probe molecule, the lowest CV solution could be detected at 10 M, and the enhancement factor (EF) was calculated to be 9.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!