Species diversity has been shown to decrease prevalence of disease in a variety of host-pathogen systems, in a phenomenon termed the Dilution Effect. Several mechanisms have been proposed by which diversity may decrease prevalence, though few have been tested in natural host-pathogen systems. We investigated the mechanisms by which diversity influenced the prevalence of Sin Nombre virus (SNV), a directly transmitted virus in deer mice (Peromyscus maniculatus). We monitored both intra and interspecific encounters of deer mice using foraging arenas at five sites in the Great Basin Desert with disparate levels of species diversity to examine two potential mechanisms which may contribute to the dilution of SNV prevalence: (1) reduced frequency of encounters between deer mice, or (2) reduced duration of contacts between deer mice. We also investigated the relationship between deer mouse density and these mechanisms, as density is often predicted to influence both inter and intraspecific encounters. Results of our study indicate that frequency of intraspecific interactions between deer mice was reduced with increased diversity. Species diversity did not impact average duration of encounters. Density was correlated with absolute, but not relative rates of encounters between deer mice, suggesting that encounters may be influenced by factors other than density. Our study indicates that species diversity influences the dynamics of SNV by reducing encounters between deer mice in a trade-off between intra and interspecific interactions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10393-009-0240-2 | DOI Listing |
J Helminthol
January 2025
Consejo Nacional de Investigaciones Científicas y Técnicas - CONICET. Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata, Paseo del Bosque s/n (1900), La Plata, Argentina.
Neuroscience
January 2025
Johns Hopkins University School of Medicine, Department of Neurology, and the Kennedy Krieger Institute, Baltimore, MD, United States.
Deer mice provide a valuable naturally occurring animal model for investigating pathophysiological mechanisms underlying repetitive behaviors. Prior investigations using this model have identified abnormalities in the cortico-basal ganglia circuitry, including alterations within the indirect pathway and levels of endogenous opioids in the frontal cortex. In this study, the behaviors of n = 7 mice were quantified, and their brains were sectioned.
View Article and Find Full Text PDFMicrob Pathog
January 2025
College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China; Jilin Province Sika Deer Efficient Breeding and Product Development Technology Engineering Research Center, Changchun, China; The Ministry of Education Key Laboratory of Animal Production and the Product Quality and Safety, Changchun, China. Electronic address:
Mycobacterium tuberculosis enters the body through the respiratory tract, produces and releases virulence proteins through a variety of mechanisms, regulates the host immune mechanism through a variety of ways, and then survives in the body for a long time. These depend on virulence genes encoded by Mycobacterium tuberculosis. Previous studies found that the Rv3435c gene of Mycobacterium tuberculosis is highly conserved in pathogenic mycobacterium, but not conserved in non-pathogenic mycobacterium, which may be a potential virulence gene, and inhibit the secretion of inflammatory factors in RAW264.
View Article and Find Full Text PDFFront Pharmacol
December 2024
College of Animal Science and Technology, Jilin Agricultural University, Changchun, China.
Background: Sika deer (, 1838) antler is a highly esteemed tonic renowned for its abundant assortment of polypeptides, polysaccharides, amino acids, and minerals, and is recognized for its multifarious pharmacological properties. However, limited research has been conducted regarding the variation in composition of deer antlers between the upper and basal sections, as well as their pharmacological effects on immunological activity and anti-fatigue in mice. The objective of this study was to conduct a comprehensive analysis on the appearance, chemical composition, and pharmacological effects of different components within sika deer antlers.
View Article and Find Full Text PDFBMC Biol
December 2024
College of Veterinary Medicine, Midwestern University, Glendale, AZ, USA.
Background: The order Rodentia is the largest group of mammals. Diversification of vocal communication has contributed to rodent radiation and allowed them to occupy diverse habitats and adopt different social systems. The mechanism by which efficient vocal sounds, which carry over surprisingly large distances, are generated is incompletely understood.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!