Neuronal redox phenomena are involved in numerous biochemical pathways and play a key role in many pathological events and clinical situations. The oxidation/reduction (redox) state present in biological compartments is a major target for possible pharmaceutical intervention and, consequently, the processes associated with its change have attracted increased attention in recent years. Here, we analyze the redox environment and its spatial compartmentalization in differentiated neuronal phenotype of PC-12 cells using a redox-sensitive protein (i.e., a mutant of the Yellow Fluorescent protein), employed ratiometrically. Redox maps of cells were generated with an elevate spatial resolution, and the spatial distributions of highly oxidized and highly reduced regions have been determined. A quantitative analysis of redox maps allows the disclosure of a peculiar spatial organization of the redox environment.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00249-009-0470-9DOI Listing

Publication Analysis

Top Keywords

redox environment
12
redox maps
8
redox
6
compartmentalization redox
4
environment pc-12
4
pc-12 neuronal
4
neuronal cells
4
cells neuronal
4
neuronal redox
4
redox phenomena
4

Similar Publications

Whether metazoan diversification during the Cambrian Radiation was driven by increased marine oxygenation remains highly debated. Repeated global oceanic oxygenation events have been inferred during this interval, but the degree of shallow marine oxygenation and its relationship to biodiversification and clade appearance remain uncertain. To resolve this, we interrogate an interval from ~527 to 519 Ma, encompassing multiple proposed global oceanic oxygenation events.

View Article and Find Full Text PDF

The hypoxic environment of solid tumors significantly diminishes the therapeutic efficacy of oxygen-dependent photodynamic therapy. Developing efficient photosensitizers that operate photoredox catalysis presents a promising strategy to overcome this challenge. Herein, we report the rational design of two rhenium(I) tricarbonyl complexes ( and ) with electron donor-acceptor-donor configuration.

View Article and Find Full Text PDF

Operando Synchrotron X-Ray Absorption Spectroscopy: A Key Tool for Cathode Material Studies in Next-Generation Batteries.

Adv Sci (Weinh)

January 2025

Institute for Superconducting & Electronic Materials (ISEM), Faculty of Engineering and Information Sciences (EIS), University of Wollongong, Wollongong, NSW, 2500, Australia.

Rechargeable batteries are central to modern energy storage systems, from portable electronics to electric vehicles. The cathode material, a critical component, largely dictates a battery's energy density, capacity, and overall performance. This review focuses on the application of operando X-ray absorption spectroscopy (XAS) to study cathode materials in Li-ion, Na-ion, Li-S, and Na-S batteries.

View Article and Find Full Text PDF

Neuron Modulation by Synergetic Management of Redox Status and Oxidative Stress.

Small

January 2025

Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Academy for Engineering and Technology, Fudan University, Shanghai, 200433, P. R. China.

The transient receptor potential (TRP) channel is a key sensor for diverse cellular stimuli, regulating the excitability of primary nociceptive neurons. Sensitization of the TRP channel can heighten pain sensitivity to innocuous or mildly noxious stimuli. Here, reversible modulation of TRP channels is achieved by controlling both the light-induced photoelectrochemical reaction to induce neuronal depolarization, and antioxidants for neuronal protection.

View Article and Find Full Text PDF

Relationship assessment of microbial community and cometabolic consumption of 2-chlorophenol.

Appl Microbiol Biotechnol

January 2025

Department of Biotechnology, Universidad Autónoma Metropolitana-Iztapalapa, Av. Ferrocarril San Rafael Atlixco 186, Col. Leyes de Reforma 1A Sección, Iztapalapa, CDMX, Mexico City, Mexico.

The relationship of microbial community and cometabolic consumption of 2-chlorophenol (2-CP) in a nitrifying sequencing batch reactor (SBR) was studied. The assessment of the population dynamics of the nitrifying sludge during the cometabolic 2-CP consumption with increasing ammonium (NH) concentrations in the SBR showed the presence of 39 different species of which 10 were always present in all cycles. Fifty-five percent of the species found were grouped as Proteobacteria (45% as β-proteobacteria and 10% as γ-proteobacteria class), 30% as Acidobacteria, and 15% as Deinococcus-Thermus phyla.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!