Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Extensive 3-D finite-difference time-domain simulations are carried out to elucidate the nature of surface plasmon polaritons (SPPs) and localized surface plasmon polaritons (LSPs) generated by nanoscale holes in thin metallic films interacting with light. Both isolated nanoholes and square arrays of nanoholes in gold films are considered. For isolated nanoholes, we expand on an earlier discussion of Yin et al. [Appl. Phys. Lett. 85, 467-469 (2004)] on the origins of fringe patterns in the film and the role of nearfield scanning optical microscope probe interactions. The associated light transmission of a single nanohole is enhanced when a LSP excitation of the nanohole itself is excited. Periodic arrays of nanoholes exhibit more complex behavior, with light transmission peaks exhibiting distinct minima and maxima that can be very well described with Fano lineshape models. This behavior is correlated with the coupling of SPP Bloch waves and more directly transmitted waves through the holes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/opex.13.003150 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!