A comparative study of pupil filters for transverse superresolution is presented in this article. We propose to combine the advantages of amplitude and phase filters in one complex filter that performs better than either phase or amplitude filters designed so far. The performance here refers to having a smaller spot size along with higher peak to side lobe intensity ratio. Using numerical simulation the limitations of phase and amplitude filters are assessed. The experimental verification of the designed combination filter is performed with two LCD spatial light modulators used for displaying separately the phase and amplitude part of the filter. Results obtained from this setup confirm the simulation.

Download full-text PDF

Source
http://dx.doi.org/10.1364/opex.13.002835DOI Listing

Publication Analysis

Top Keywords

phase amplitude
12
combination filter
8
lcd spatial
8
spatial light
8
light modulators
8
amplitude filters
8
high efficient
4
efficient superresolution
4
superresolution combination
4
filter
4

Similar Publications

Astrocytes critically shape whole-brain structure and function by forming extensive gap junctional networks that intimately and actively interact with neurons. Despite their importance, existing computational models of whole-brain activity ignore the roles of astrocytes while primarily focusing on neurons. Addressing this oversight, we introduce a biophysical neural mass network model, designed to capture the dynamic interplay between astrocytes and neurons via glutamatergic and GABAergic transmission pathways.

View Article and Find Full Text PDF

Aim: Exposure to light at night and meal time misaligned with the light/dark (LD) cycle-typical features of daily life in modern 24/7 society-are associated with negative effects on health. To understand the mechanism, we developed a novel protocol of complex chronodisruption (CD) in which we exposed female rats to four weekly cycles consisting of 5-day intervals of constant light and 2-day intervals of food access restricted to the light phase of the 12:12 LD cycle.

Methods: We examined the effects of CD on behavior, estrous cycle, sleep patterns, glucose homeostasis and profiles of clock- and metabolism-related gene expression (using RT qPCR) and liver metabolome and lipidome (using untargeted metabolomic and lipidomic profiling).

View Article and Find Full Text PDF

A Drosophila cardiac myosin increases jump muscle stretch activation and shortening deactivation.

Biophys J

January 2025

Department of Biological Sciences & Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute Troy, NY 12180, USA; Department of Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute Troy, NY 12180, USA. Electronic address:

Stretch activation (SA), a delayed increase in force production following rapid muscle lengthening, is critical to the function of vertebrate cardiac muscle and insect asynchronous indirect flight muscle (IFM). SA enables or increases power generation in muscle types used in a cyclical manner. Recently, myosin isoform expression has been implicated as a mechanism for varying the amplitude of SA in some muscle types.

View Article and Find Full Text PDF

This study delves into the feasibility of leveraging quasi-static component (QSC) generation during primary Lamb wave propagation to discern subtle alterations in the interfacial properties of a two-layered plate. Unlike the second-harmonic generation of Lamb waves, QSC generation doesn't necessitate precise phase-velocity matching but rather requires an approximate matching of group velocities to ensure the emergence of cumulative growth effects. This unique characteristic empowers the QSC-based nonlinear ultrasonic method to effectively surmount the limitations associated with inherent dispersion and multimode traits of Lamb wave propagation.

View Article and Find Full Text PDF

Because of their resilience, Time-of-Flight (ToF) cameras are now essential components in scientific and industrial settings. This paper outlines the essential factors for modeling 3D ToF cameras, with specific emphasis on analyzing the phenomenon known as "wiggling". Through our investigation, we demonstrate that wiggling not only causes systematic errors in distance measurements, but also introduces periodic fluctuations in statistical measurement uncertainty, which compounds the dependence on the signal-to-noise ratio (SNR).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!