We present the design, analysis and characterization of a polarization-independent tunable resonant grating filter. Polarization independence is achieved by setting the plane of incidence parallel to the grating grooves and optimizing the fill factor to obtain a strong reflection peak for all incident polarization states. Experimental measurements show that approximate angular insensitivity to the input polarization orientation concurrent with tunability over a wavelength range of roughly 1530 nm to 1560 nm is achieved. Modulation of the reflectivity peak shape with variations in the orientation of the incidence plane are observed, and found to be in qualitative agreement with theoretical predictions.

Download full-text PDF

Source
http://dx.doi.org/10.1364/opex.13.002196DOI Listing

Publication Analysis

Top Keywords

resonant grating
8
grating filter
8
design characterization
4
characterization tunable
4
tunable polarization-independent
4
polarization-independent resonant
4
filter design
4
design analysis
4
analysis characterization
4
characterization polarization-independent
4

Similar Publications

The fiber Bragg grating (FBG) is fabricated by the femtosecond laser writing technique with a plane-by-plane (Pl-by-Pl) method in the double-cladding fiber (DCF). The refractive index modified (RIM) region formed by this method is 12 μm × 8 μm in size. Due to the Pl-by-Pl method, high-order Bragg resonances with reflectance greater than 99% can be achieved.

View Article and Find Full Text PDF

Type-II superlattice (T2SL) detectors are emerging as key technologies for next-generation long-wavelength infrared (LWIR) applications, particularly in the 8-14 µm range, offering advantages in space exploration, medical imaging, and defense. A major challenge in improving quantum efficiency (QE) lies in achieving sufficient light absorption without increasing the active layer (AL) thickness, which can elevate dark current and complicate manufacturing. Traditional methods, such as thickening the absorber, are limited by the short carrier lifetime in T2SLs, necessitating alternative solutions.

View Article and Find Full Text PDF

The optical properties of the 1D nanograting chip have been explored based on computational and experimental studies. Dispersion curve analysis demonstrates cavity and surface plasmon modes in the 1D nanograting chips with periods of 400 nm and 800 nm. In this grating period range, the cut-off period is at a grating period of 644 nm under excitation with a wavelength of 670 nm.

View Article and Find Full Text PDF

The rigid Fabry-Pérot (F-P) cavity has emerged as the preferred core sensing component for optical pressure, vibration, and acoustic sensing in harsh environments, owing to its high reliability and structural stability. However, due to the inadequate temperature resistance of the optical dielectric film, maintaining a high level of precision in the rigid F-P cavity at elevated temperatures proves to be challenging. Volume Bragg grating (VBG) is a three-dimensional optical element modified by a femtosecond laser within a transparent glass medium to create a periodic refractive index distribution.

View Article and Find Full Text PDF

Realizing zero-threshold population inversion plasmonic doping.

Nanoscale

January 2025

Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China.

Lowering the population inversion threshold is key to leveraging quantum dots (QDs) for nanoscale lasing and laser miniaturization. However, optical realization of population inversion in QDs has an inherent limitation: the number of excited electrons per QD is bound by the absorbed photons. Here we show that one can break this population limit and realize near-zero threshold inversion plasmonic doping.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!