Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Using nonparaxial vector diffraction theory derived using the Hertz vector formalism, integral expressions for the electric and magnetic field components of light within and beyond an apertured plane are obtained for an incident plane wave. For linearly polarized light incident on a circular aperture, the integrals for the field components and for the Poynting vector are numerically evaluated. By further two-dimensional integration of a Poynting vector component, the total transmission of a circular aperture is determined as a function of the aperture radius to wavelength ratio. The validity of using Kirchhoff boundary conditions in the aperture plane is also examined in detail.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/opex.13.001424 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!