We propose and experimentally demonstrate two configurations of photonic filters for the processing of microwave signals featuring tunability, reconfigurability and negative coefficients based on the use of low cost optical sources. The first option is a low power configuration based on spectral slicing of a broadband source. The second is a high power configuration based on fixed lasers. Tunability, reconfigurability and negative coefficients are achieved by means of a MEMS cross-connect, a variable optical attenuator array and simple 2x2 switches respectively.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/opex.13.001412 | DOI Listing |
ACS Nano
December 2024
MIIT Key Laboratory of Advanced Display Materials and Devices, Jiangsu Engineering Research Center for Quantum Dot Display, School of Materials Science and Engineering, Institute of Optoelectronics & Nanomaterials, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China.
Reconfigurable field-effect transistors (RFETs) offer notable benefits on electronic and optoelectronic logic circuits, surpassing the integration, flexibility, and cost-efficiency of conventional complementary metal-oxide semiconductor transistors. The low on/off current ratio of these transistors remains a considerable impediment in the practical application of RFETs. To overcome these limitations, a van der Waals heterojunction (vdWH) transistor composed of WSe/TaNiSe has been proposed.
View Article and Find Full Text PDFPhys Rev Lett
December 2024
Université Paris Cité, CNRS, Laboratoire Matériaux et Phénomènes Quantiques, 75013 Paris, France.
Harnessing high-dimensional entangled states of light presents a frontier for advancing quantum information technologies, from fundamental tests of quantum mechanics to enhanced computation and communication protocols. In this context, the spatial degree of freedom stands out as particularly suited for on-chip integration. But while traditional demonstrations produce and manipulate path-entangled states sequentially with discrete optical elements, continuously coupled nonlinear waveguide systems offer a promising alternative where photons can be generated and interfere along the entire propagation length, unveiling novel capabilities within a reduced footprint.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
December 2024
Tianjin University, Materials Science and Engineering, CHINA.
Multispectral camouflage materials play a vital role in sophisticated multi-band electromagnetic (EM) applications. However, conventional single-band stealth is difficult to align with the growing demand for multi-band compatibility and intelligent adaptation. Herein, we report the design and synthesis of cephalopod-inspired MXene-integrated cholesteric liquid crystal elastomers (MXene-CLCEs) with multispectral camouflage capability, which was fabricated through in situ thiol-acrylate Michael addition and free-radical photopolymerization of CLCE precursor and isocyanate-mediated robust covalent chemical bonding of MXene nanocoating at the interface.
View Article and Find Full Text PDFAdv Mater
December 2024
Centre for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing, 100081, China.
Through the stacking technique of 2D materials, the interfacial polarization can be switched by an interlayer sliding, known as sliding ferroelectricity, which is advantageous in ultra-thin thickness, high switching speed, and high fatigue resistance. However, uncovering the relationship between the sliding path and the polarization state in rhombohedral-stacked materials remains a challenge, which is the key to 2D sliding ferroelectricity. Here, layer-dependent multidirectional sliding ferroelectricity in rhombohedral-stacked InSe (γ-InSe) is reported via dual-frequency resonance tracking piezoresponse force microscopy and conductive atomic force microscopy.
View Article and Find Full Text PDFNano Lett
December 2024
School of Physics and Astronomy, Faculty of Science, Monash University, Melbourne, Victoria 3800, Australia.
Ultrathin and low-loss phase-change materials (PCMs) are highly valued for their fast and effective phase transitions and applications in reconfigurable photonic chips, metasurfaces, optical modulators, sensors, photonic memories, and neuromorphic computing. However, conventional PCMs mostly suffer from high intrinsic losses in the near-infrared (NIR) region, limiting their potential for high quality factor (-factor) resonant metasurfaces. Here we present the design and fabrication of tunable bound states in the continuum (BIC) metasurfaces using the ultra-low-loss PCM SbSe.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!