Demethylation of transcriptional regulatory elements and gene coding regions is an important step in the epigenetic regulation of gene expression. Several noncoding conserved regions are required for the efficient transcription of cytokine genes. In this paper, we show that the deletion of one such sequence, conserved noncoding sequence 1 (CNS-1), interferes with the efficient demethylation of Th2 cytokine genes but has little effect on histone modifications in the area. Th2 cells derived from CD4 single-positive (SP) mature thymocytes exhibit more rapid demethylation of CNS-1 and Th2-specific cytokine genes and produce more Th2 cytokines than do Th2 cells derived from CD4-positive peripheral naive T cells. De-repression of the Th1 cytokine IFN-gamma was also detected in Th2-primed CD4 SP thymocytes but not in naive T cells. Our results indicate that susceptibility to demethylation determines the efficiency and kinetics of cytokine gene transcription. The extrathymic maturation step undergone by naive T cells suppresses robust and rapid cytokine expression, whereas mature CD4 SP thymocytes maintain a rapid and less-specific cytokine expression profile. Finally, we detected the methyl cytosine binding protein MBD2 at CNS-1 in mature thymocytes, suggesting that this protein may regulate the demethylation of this region.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.4049/jimmunol.0801643 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!