Neurons in the primary auditory cortex respond less strongly to a commonly occurring "standard" tone than to the same tone when it is rare or "deviant." This phenomenon, called "stimulus-specific adaptation" (SSA), has been proposed as a possible single-neuron correlate of the mismatch negativity, a cortical evoked potential associated with stimulus novelty. Previous studies in cat did not observe SSA in single neurons in the auditory thalamus. However, these reports did not differentiate between the auditory thalamic subdivisions and did not examine the effects of changing the stimulus presentation rate. To explore the possibility of thalamic SSA more completely, we recorded extracellularly from 30 single units and 22 multiunit clusters in the ventral, medial, and dorsal subdivisions of the mouse medial geniculate body (MGB), while presenting the anesthetized animals with sequences of standard and deviant tones at interstimulus intervals of 400, 500 and 800 ms. We found SSA in the auditory thalamus at all three stimulus presentation rates, primarily in the medial subdivision but to a lesser degree also in the ventral MGB. Thalamic SSA was evident from the earliest onset of tone-evoked activity, although the latencies of responses to standard and deviant tones were not significantly different. Together with related findings of SSA in neurons of the "belt" regions of the inferior colliculus, these results demonstrate that SSA is present at subcortical levels, primarily in but not restricted to the nonlemniscal auditory pathway.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6666468PMC
http://dx.doi.org/10.1523/JNEUROSCI.0793-09.2009DOI Listing

Publication Analysis

Top Keywords

auditory thalamus
12
stimulus presentation
8
thalamic ssa
8
standard deviant
8
deviant tones
8
ssa
7
auditory
6
stimulus-specific adaptation
4
adaptation occurs
4
occurs auditory
4

Similar Publications

Background: Converging evidence from clinical neuroimaging and animal models has strongly implicated dysfunction of thalamocortical circuits in the pathophysiology of schizophrenia. Preclinical models of genetic risk for schizophrenia have shown reduced synaptic transmission from auditory thalamus to primary auditory cortex, which may represent a correlate of auditory disturbances such as hallucinations. Human neuroimaging studies, however, have found a generalized increase in resting state functional connectivity (RSFC) between whole thalamus and sensorimotor cortex in people with schizophrenia (PSZ).

View Article and Find Full Text PDF

Neural correlates of perceptual plasticity in the auditory midbrain and thalamus.

J Neurosci

January 2025

Neuroscience and Cognitive Science Program, University of Maryland, College Park, Maryland, 20742.

Hearing is an active process in which listeners must detect and identify sounds, segregate and discriminate stimulus features, and extract their behavioral relevance. Adaptive changes in sound detection can emerge rapidly, during sudden shifts in acoustic or environmental context, or more slowly as a result of practice. Although we know that context- and learning-dependent changes in the sensitivity of auditory cortical (ACX) neurons support many aspects of perceptual plasticity, the contribution of subcortical auditory regions to this process is less understood.

View Article and Find Full Text PDF

Objectives: The neural mechanism associated with impaired consciousness is not fully clear. We aim to explore the association between static and dynamic minimum spanning tree (MST) characteristics and neural mechanism underlying impaired consciousness.

Methods: MSTs were constructed based on full-length functional magnetic resonance imaging (fMRI) signals and fMRI signal segments within each time window.

View Article and Find Full Text PDF

Introduction: Prior researches have reported abnormal changes of thalamus in patients with subcortical ischemic vascular disease (SIVD), which was usually analyzed as a whole. However, it was currently unclear whether the structure, function and connectivity of thalamic subregions were differentially affected by this disease and affected different cognitive functions.

Methods: This study recruited 30 SIVD patients with cognitive impairment (SIVD-CI), 30 SIVD patients with cognitive unimpaired (SIVD-CU) and 32 normal controls.

View Article and Find Full Text PDF

The posterior "tail" region of the striatum receives dense innervation from sensory brain regions and is important for behaviors that require sensorimotor integration. The output neurons of the striatum, D1 and D2 striatal projection neurons (SPNs), which make up the direct and indirect pathways, are thought to play distinct functional roles, although it remains unclear if these neurons show cell-type-specific differences in their response to sensory stimuli. Here, we examine the strength of synaptic inputs onto D1 and D2 SPNs following the stimulation of upstream auditory pathways.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!