Activity of the neurons in the lateral intraparietal cortex (LIP) displays a mixture of sensory, motor, and memory signals. Moreover, they often encode signals reflecting the accumulation of sensory evidence that certain eye movements might lead to a desirable outcome. However, when the environment changes dynamically, animals are also required to combine the information about its previously chosen actions and their outcomes appropriately to update continually the desirabilities of alternative actions. Here, we investigated whether LIP neurons encoded signals necessary to update an animal's decision-making strategies adaptively during a computer-simulated matching-pennies game. Using a reinforcement learning algorithm, we estimated the value functions that best predicted the animal's choices on a trial-by-trial basis. We found that, immediately before the animal revealed its choice, approximately 18% of LIP neurons changed their activity according to the difference in the value functions for the two targets. In addition, a somewhat higher fraction of LIP neurons displayed signals related to the sum of the value functions, which might correspond to the state value function or an average rate of reward used as a reference point. Similar to the neurons in the prefrontal cortex, many LIP neurons also encoded the signals related to the animal's previous choices. Thus, the posterior parietal cortex might be a part of the network that provides the substrate for forming appropriate associations between actions and outcomes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2743508 | PMC |
http://dx.doi.org/10.1523/JNEUROSCI.1479-09.2009 | DOI Listing |
ACS Biomater Sci Eng
January 2025
Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China.
Mitochondrial dysfunction contributes to the pathology of hypoxia-ischemia (HI) brain damage by aberrant production of ROS. Hydrogen sulfide (HS) has been demonstrated to exert neuroprotective effects through antioxidant mechanisms. However, the diffusion of HS is not specifically targeted and may even be systemically toxic.
View Article and Find Full Text PDFMaternal exposures are known to influence the risk of isolated cleft lip with or without cleft palate (CL/P) - a common and highly heritable birth defect with a multifactorial etiology. To identify new CL/P risk loci, we conducted a genome-wide gene-environment interaction (GEI) analysis of CL/P on a sample of 540 cases and 260 controls recruited from the Philippines, incorporating the interaction effects of genetic variants with maternal smoking and vitamin use. As GEI analyses are typically low in power and the results can be difficult to interpret, we used multiple testing frameworks to evaluate potential GEI effects: 1 degree-of-freedom (1df) GxE test, the 3df joint test, and the two-step EDGE approach.
View Article and Find Full Text PDFCase Rep Neurol Med
December 2024
Department of Neurosurgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.
This study reports a rare case of referred pain in the trigeminal nerve distribution caused by entrapment of the greater occipital nerve (GON). Notably, the pain extended to the ipsilateral tongue, an unusual intraoral involvement. GON entrapment can lead to sensitization in secondary nociceptive neurons within the trigeminocervical complex (TCC), which receives signals from both trigeminal and occipital nerves, causing referred facial pain.
View Article and Find Full Text PDFAdv Mater
December 2024
Key Laboratory of Smart Drug Delivery, Ministry of Education, National Key Laboratory of Advanced Drug Formulations for Overcoming Delivery Barriers, School of Pharmacy, Fudan University, Shanghai, 201203, P. R. China.
Clear-cut evidence has linked defective autophagy to Alzheimer's disease (AD). Recent studies underscore a unique hurdle in AD neuronal autophagy: impaired retrograde axonal transport of autophagosomes, potent enough to induce autophagic stress and neurodegeneration. Nonetheless, pertinent therapy is unavailable.
View Article and Find Full Text PDFElife
December 2024
Department of Human Anatomy and Cell Science, The Children's Hospital Research Institute of Manitoba (CHRIM), Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada.
Cerebellar nuclei (CN) neurons serve as the primary output of the cerebellum and originate from the cerebellar primordium at early stages of cerebellar development. These neurons are diverse, integrating information from the cerebellar cortex and relaying it to various brain regions. Employing various methodologies, we have characterized a specific subset of CN neurons that do not originate from the rhombic lip or ventricular zone of the cerebellar primordium.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!