To further evaluate the role of Rft1 in the transbilayer movement of Man(5)GlcNAc(2)-P-P-dolichol (M5-DLO), a series of experiments was conducted with intact cells and sealed microsomal vesicles. First, an unexpectedly large accumulation (37-fold) of M5-DLO was observed in Rft1-depleted cells (YG1137) relative to Glc(3)Man(9)GlcNAc(2)-P-P-Dol in wild type (SS328) cells when glycolipid levels were compared by fluorophore-assisted carbohydrate electrophoresis analysis. When sealed microsomes from wild type cells and cells depleted of Rft1 were incubated with GDP-[(3)H]mannose or UDP-[(3)H]GlcNAc in the presence of unlabeled GDP-Man, no difference was observed in the rate of synthesis of [(3)H]Man(9)GlcNAc(2)-P-P-dolichol or Man(9)[(3)H]GlcNAc(2)-P-P-dolichol, respectively. In addition, no difference was seen in the level of M5-DLO flippase activity in sealed wild type and Rft1-depleted microsomal vesicles when the activity was assessed by the transport of GlcNAc(2)-P-P-Dol(15), a water-soluble analogue. The entry of the analogue into the lumenal compartment was confirmed by demonstrating that [(3)H]chitobiosyl units were transferred to endogenous peptide acceptors via the yeast oligosaccharyltransferase when sealed vesicles were incubated with [(3)H]GlcNAc(2)-P-P-Dol(15) in the presence of an exogenously supplied acceptor peptide. In addition, several enzymes involved in Dol-P and lipid intermediate biosynthesis were found to be up-regulated in Rft1-depleted cells. All of these results indicate that although Rft1 may play a critical role in vivo, depletion of this protein does not impair the transbilayer movement of M5-DLO in sealed microsomal fractions prepared from disrupted cells.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2740409PMC
http://dx.doi.org/10.1074/jbc.M109.000893DOI Listing

Publication Analysis

Top Keywords

transbilayer movement
12
wild type
12
impair transbilayer
8
movement man5glcnac2-p-p-dolichol
8
sealed microsomes
8
sealed microsomal
8
microsomal vesicles
8
rft1-depleted cells
8
cells
7
sealed
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!