The dynamic changes in the temporal appearance and quantity of a new class of influenza virus, noninfectious cell-killing particles (niCKP), were compared to defective interfering particles (DIP). After a single high-multiplicity passage in MDCK cells of an egg-derived stock that lacked detectable niCKP or DIP, both classes of particles appeared in large numbers (>5 x 10(8)/ml), and the plaque-forming particle (PFP) titer dropped approximately 60-fold. After two additional serial high-multiplicity passages the DIP remained relatively constant, the DIP/niCKP ratio reached 10:1, and the PFP had declined by about 10,000-fold. Together, the niCKP and DIP subpopulations constituted ca. 20% of the total hemagglutinating particle population in which these noninfectious biologically active particles (niBAP) were subsumed. DIP neither killed cells nor interfered with the cell-killing (apoptosis-inducing) activity of niCKP or PFP (infectious CKP), even though they blocked the replication of PFP. Relative to the UV-target of approximately 13,600 nucleotides (nt) for inactivation of PFP, the UV target for niCKP was approximately 2,400 nt, consistent with one of the polymerase subunit genes, and that for DIP was approximately 350 nt, consistent with the small DI-RNA responsible for DIP-mediated interference. Thus, niCKP and DIP are viewed as distinct particles with a propensity to form during infection at high multiplicities. These conditions are postulated to cause aberrations in the temporally regulated replication of virus and its packaging, leading to the production of niBAP. DIP have been implicated in the virulence of influenza virus, but the role of niCKP is yet unknown.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2715774 | PMC |
http://dx.doi.org/10.1128/JVI.02680-08 | DOI Listing |
Expert Rev Vaccines
January 2025
Hospital Universitario La Paz-IdiPAZ, Madrid, Spain.
Introduction: Vaccines to prevent important infections involving, e.g. influenza viruses, severe acute respiratory syndrome-causing coronaviruses (e.
View Article and Find Full Text PDFOpen Respir Med J
December 2024
Pulmonology Department, Prime Medical Hospital, Dubai, United Arab Emirates.
Traditional testing methods in the Middle East Region, including the United Arab Emirates (UAE), particularly the testing of Respiratory Syncytial Virus (RSV), influenza, group A streptococcus (GAS), and COVID-19 have the potential to be upgraded to new and advanced diagnostics methods that improve lead time to diagnosis, consumption of healthcare resources and patient experience. In addition, based on the research, it was reported that there is an underreporting of respiratory cases, overuse of antibiotics, and prolonged hospitalizations which is posing pressure on UAE healthcare stakeholders. A literature review was done exploring UAE's current diagnostic practices, recommended guidelines, diagnostic gaps, and challenges in RSV, GAS, Influenza, and COVID-19.
View Article and Find Full Text PDFMicrobiome
January 2025
Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.
Background: Numerous studies have confirmed a close relationship between the pathogenicity of influenza and respiratory microbiota, but the mechanistic basis for this is poorly defined. Also, the majority of these studies have been conducted on murine models, and it remains unclear how far these findings can be extrapolated from murine models to other animals. Considering that influenza A virus is increasingly recognized as an important canine respiratory pathogen, this study investigated the cross-talk between nasal and lung tissues mediated by microbes and its association with influenza susceptibility in a beagle dog model.
View Article and Find Full Text PDFClin Microbiol Infect
January 2025
National Center for Respiratory Medicine; State Key Laboratory of Respiratory Health and Multimorbidity; New Cornerstone Science Laboratory; National Clinical Research Center for Respiratory Diseases; Department of Respiratory Medicine, Capital Medical University, Institute of Respiratory Medicine of Capital Medical University; Chinese Academy of Medical Sciences; Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China. Electronic address:
Objectives: To evaluate the therapeutic effect of suraxavir marboxil (GP681, abbreviated as suraxavir) in adults with uncomplicated influenza.
Methods: We conducted a multi-center randomized, double-blind, placebo-controlled phase 2 trial in 18 Chinese centers. Participants had to be aged 18-65 years with positive influenza test, presenting with at least one influenza systemic and respiratory symptoms in at least moderate severity within 48 hours of onset.
Semin Respir Crit Care Med
January 2025
Monoclonal Antibody Discovery (MAD) Lab, Fondazione Toscana Life Sciences, Siena, Italy.
In this review, we present the efforts made so far in developing effective solutions to prevent infections caused by seven major respiratory pathogens: influenza virus, respiratory syncytial virus (RSV), the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), , (), , and . Advancements driven by the recent coronavirus disease 2019 (COVID-19) crisis have largely focused on viruses, but effective prophylactic solutions for bacterial pathogens are also needed, especially in light of the antimicrobial resistance (AMR) phenomenon. Here, we discuss various innovative key technologies that can help address this critical need, such as (a) the development of Lung-on-Chip ex vivo models to gain a better understanding of the pathogenesis process and the host-microbe interactions; (b) a more thorough investigation of the mechanisms behind mucosal immunity as the first line of defense against pathogens; (c) the identification of correlates of protection (CoPs) which, in conjunction with the Reverse Vaccinology 2.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!