Increased lipid metabolism and cell turnover of MiaPaCa2 cells induced by high-fat diet in an orthotopic system.

Metabolism

Division of Surgery, Department of Clinical Science, Intervention and Technology, Karolinska University Hospital, Huddinge 14186, Sweden.

Published: August 2009

In this study, we investigated whether increased dietary fat influences established pancreatic cancer cells. MiaPaCa2 human pancreatic cancer cells were grown orthotopically in athymic mice fed normal diet (ND) or high-fat diet (HF). In the resulting tumors, medium-chain acyl-coenzyme A dehydrogenase (MCAD, a regulator of fatty acid beta-oxidation) and Cu/Zn-superoxide dismutase (an antioxidant enzyme) were determined using Western blotting. The MCAD messenger RNA (mRNA) was determined by real-time polymerase chain reaction. Intracellular lipid droplets, proliferating cells (Ki67 positive), and apoptotic cells were stained in tumor sections. The HF tumors were heavier than the ND tumors (1.60 +/- 0.08 vs 1.13 +/- 0.10 g, P < .01, 6 tumors per group). The MCAD and Cu/Zn-superoxide dismutase proteins and the MCAD mRNA were increased in HF tumors compared with those seen in ND tumors. The HF tumors contained extensive central necrosis, which was surrounded with apoptotic and proliferating cells. The HF tumors also showed numerous lipid droplets. In the ND tumors, necrosis was uncommon, apoptotic cells were sporadic, and lipid droplets were few. In follow-up experiments, MiaPaCa2 cells were incubated in vitro in the presence or absence of fatty acids (oleic and linoleic acids). The fatty acid exposure increased lipid droplets, cell proliferation, and MCAD mRNA expression in MiaPaCa2 cells. In conclusion, increased dietary fat stimulates lipid metabolism and cell turnover in MiaPaCa2 human pancreatic cancer cells.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.metabol.2009.03.027DOI Listing

Publication Analysis

Top Keywords

lipid droplets
16
miapaca2 cells
12
pancreatic cancer
12
cancer cells
12
cells
10
tumors
9
increased lipid
8
lipid metabolism
8
metabolism cell
8
cell turnover
8

Similar Publications

Common salt (NaCl) causes developmental, behavioral, and physiological defects in .

Nutr Neurosci

January 2025

Neural Developmental Biology Lab, Department of Life Science, NIT Rourkela, Rourkela, Odisha, India.

Purpose: The incidence of obesity has surged to pandemic levels in recent decades. Approximately 1.89 million obesity are linked to excessive salt consumption.

View Article and Find Full Text PDF

Tau reduction impairs nephrocyte function in Drosophila.

BMB Rep

January 2025

Department of Medical Science, Soonchunhyang University, Asan 31538, 2Department of Medical Biotechnology, Soonchunhyang University, Asan 31538, Korea.

Tau, a microtubule-associated protein, is known for its significant involvement in neurodegenerative diseases. While various molecular and immunohistochemical techniques have confirmed the presence of Tau in podocytes, its precise function within these cells remains elusive. In this study, we investigate the role of Tau in kidney podocytes using Drosophila pericardial nephrocytes as a model.

View Article and Find Full Text PDF

A novel mechanism promoting lipid droplet formation.

Trends Plant Sci

January 2025

Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou 510631, China. Electronic address:

Recently, Torres-Romero et al. identified a novel lipid droplet (LD)-associated protein, α/β-hydrolase domain containing protein 1 (ABHD1), in algae. Structurally, ABHD1 promotes the budding and growth of LDs and, functionally, it hydrolyzes lyso-diacylglyceryl-N,N,N-trimethylhomoserine (lyso-DGTS) to generate glyceryl-N,N,N-trimethylhomoserine (GTS) and free fatty acids (FFAs).

View Article and Find Full Text PDF

Polarity-Sensitive fluorescent probes based on triphenylamine for fluorescence lifetime imaging of lipid droplets.

Spectrochim Acta A Mol Biomol Spectrosc

January 2025

School of Basic Medical Sciences, Guizhou Medical University, Guiyang 550025, PR China. Electronic address:

Non-alcoholic fatty liver disease (NAFLD) is a disease closely associated with metabolic abnormalities. Lipid droplets (LDs) serve as organelles that store intracellular neutral lipids and maintain cellular energy homeostasis. Their abnormalities can cause metabolic disorders and disease, which is also one of the distinctive characteristics of NAFLD patients.

View Article and Find Full Text PDF

Biogenesis of membrane-bound organelles involves the synthesis, remodeling, and degradation of their constituent phospholipids. How these pathways regulate organelle size remains poorly understood. Here we demonstrate that a lipid-degradation pathway inhibits expansion of the endoplasmic reticulum (ER) membrane.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!