A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Modelling substrate specificity and enantioselectivity for lipases and esterases by substrate-imprinted docking. | LitMetric

Background: Previously, ways to adapt docking programs that were developed for modelling inhibitor-receptor interaction have been explored. Two main issues were discussed. First, when trying to model catalysis a reaction intermediate of the substrate is expected to provide more valid information than the ground state of the substrate. Second, the incorporation of protein flexibility is essential for reliable predictions.

Results: Here we present a predictive and robust method to model substrate specificity and enantioselectivity of lipases and esterases that uses reaction intermediates and incorporates protein flexibility. Substrate-imprinted docking starts with covalent docking of reaction intermediates, followed by geometry optimisation of the resulting enzyme-substrate complex. After a second round of docking the same substrate into the geometry-optimised structures, productive poses are identified by geometric filter criteria and ranked by their docking scores. Substrate-imprinted docking was applied in order to model (i) enantioselectivity of Candida antarctica lipase B and a W104A mutant, (ii) enantioselectivity and substrate specificity of Candida rugosa lipase and Burkholderia cepacia lipase, and (iii) substrate specificity of an acetyl- and a butyrylcholine esterase toward the substrates acetyl- and butyrylcholine.

Conclusion: The experimentally observed differences in selectivity and specificity of the enzymes were reproduced with an accuracy of 81%. The method was robust toward small differences in initial structures (different crystallisation conditions or a co-crystallised ligand), although large displacements of catalytic residues often resulted in substrate poses that did not pass the geometric filter criteria.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2699341PMC
http://dx.doi.org/10.1186/1472-6807-9-39DOI Listing

Publication Analysis

Top Keywords

substrate specificity
16
substrate-imprinted docking
12
specificity enantioselectivity
8
enantioselectivity lipases
8
lipases esterases
8
protein flexibility
8
reaction intermediates
8
geometric filter
8
filter criteria
8
docking
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!