Objective: To investigate the cytotoxic action of nephrotoxic agents using an in vitro renal cell model, focusing on the cellular oxidative status and a specific glutathione (GSH)-dependent enzyme, glyoxalase I (Gly-I).

Materials And Methods: Renal proximal tubular LLC-PK(1) cells were exposed to mercuric chloride, glycerol, cisplatin, gentamicin and cyclosporin A, and cell number/viability were determined. Oxidative stress was assessed by lipid peroxidation (LPO) assay, and Gly-I activity was measured by enzymatic method on a spectrophotometer.

Results: Both mercuric chloride (30 microm) and glycerol (2.5%) were highly toxic to LLC-PK(1) cells, inducing >90% cell death within 24 h. The remaining agents led to slightly >50% growth inhibition at 72 h. The LPO levels at 3 h in cells exposed to mercuric chloride or glycerol were approximately 2.5 times higher than that in controls. N-acetylcysteine (NAC), a potent antioxidant and precursor for GSH, almost completely (>95%) prevented renal cell death from mercuric chloride or glycerol. Gly-I activity was dependent on NAC and closely associated with cell viability. A approximately 65% loss in Gly-I activity by mercuric chloride/glycerol led to >90% cell death, while restoring a basal activity of Gly-I with NAC was accompanied by complete cell viability.

Conclusions: The cytotoxic action of nephrotoxic agents appears to be triggered by oxidative stress, leading to Gly-I inactivation. As Gly-I plays a key role in cellular detoxification, its inactivation under oxidative stress probably becomes fatal to cells. However, cytoprotection provided with NAC is significant and might have implications in preventing renal cell injury mediated through nephrotoxic agents.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1464-410X.2009.08657.xDOI Listing

Publication Analysis

Top Keywords

nephrotoxic agents
16
oxidative stress
16
mercuric chloride
16
cytotoxic action
12
action nephrotoxic
12
renal cell
12
chloride glycerol
12
gly-i activity
12
cell death
12
cell
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!