Dynamic mechanical properties of cells are becoming recognized as indicators and regulators of physiological processes such as differentiation, malignant phenotypes and mitosis. A key process in development and homeostasis is apoptosis and whilst the molecular control over this pathway is well studied, little is known about the mechanical consequences of cell death. Here, we study the caspase-dependent mechanical kinetics of single cells during early apoptosis initiated with the general protein-kinase inhibitor staurosporine. This results in internal remodelling of the cytoskeleton and nucleus which is reflected in dynamic changes in the mechanical properties of the cell. Utilizing simultaneous confocal and atomic force microscopy (AFM), we measured distinct mechanical dynamics in the instantaneous cellular Young's Modulus and longer timescale viscous deformation. This allowed us to visualize time-dependent nuclear and cytoskeletal control of force dissipation with fluorescent fusion proteins throughout the cell. This work reveals that the cell death program not only orchestrates biochemical dynamics but also controls the mechanical breakdown of the cell. Importantly, the consequences of mechanical disregulation during apoptosis may be a contributing factor to several human pathologies through the poorly timed release of dead cells and cell debris.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/cm.20391 | DOI Listing |
Eur J Med Res
January 2025
Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, China.
Objectives: SOX10 is crucially implicated in various cancer, yet the regulatory role in pancreatic cancer (PC) remains enigmatic. Underlying molecular mechanisms of SOX10 in PC were explored in our study.
Methods: Relationships between SOX10 and immune landscape were estimated using bioinformatic approaches.
BMC Musculoskelet Disord
January 2025
Department of Exercise Rehabilitation, Faculty of Sport Sciences, Bu-Ali Sina University, Hamedan, Iran.
Background: The patellofemoral joint (PFJ) stress as a primary mechanical stimulus in the patellofemoral pain (PFP) etiology is affected by plantar pressure symmetry. This study evaluated how pain exacerbation affects rear foot eversion and plantar pressure distribution symmetry.
Method: Sixty women with PFP participated in this study.
BMC Neurol
January 2025
Department of Neurology, The First Affiliated Hospital of Zhengzhou University, 1 East Jianshe Road, Zhengzhou, China.
Background: Awareness of the characteristics of glial fibrillary acidic protein autoantibody (GFAP-IgG) associated myelitis facilitates early diagnosis and treatment. We explored features in GFAP-IgG myelitis and compared them with those in myelitis associated with aquaporin-4 IgG (AQP4-IgG) and myelin oligodendrocyte glycoprotein IgG (MOG-IgG).
Methods: We retrospectively reviewed data from patients with GFAP-IgG myelitis at the First Affiliated Hospital of Zhengzhou University and Henan Children's Hospital from May 2018 to May 2023.
BMC Pulm Med
January 2025
The First Affiliated Hospital of Sun Yat-Sen University, Guangdong, 510080, China.
Aim: The aim of this systematic review and meta-analysis was to explore the effects of different pulmonary rehabilitation on respiratory function in mechanically ventilated patients and to determine the optimal type of intervention.
Method: A comprehensive search was conducted using PubMed, Embase, Web of Science, Joanna Briggs Institute(JBI), and the Cochrane Library from their inception until September 16th, 2024. The search targeted randomized controlled trials (RCTs) comparing pulmonary rehabilitation or usual care, for improving respiratory function in mechanically ventilated patients.
BMC Infect Dis
January 2025
Department of Clinical Laboratory, Key Laboratory of Clinical Laboratory Medicine of Guangxi Department of Education, the First Affiliated Hospital of Guangxi Medical University, Nanning, China.
Background: In clinical practice, the emergence of ST11-K64 carbapenem-resistant Klebsiella pneumoniae (ST11-K64 CRKP) has become increasingly alarming. Despite this trend, limited research has been conducted to elucidate the clinical and molecular characteristics of these strains.
Objectives: This study aimed to comprehensively investigate the clinical characteristics, antimicrobial resistance patterns, resistance and virulence-associated genes, and molecular epidemiology of ST11-K64 CRKP in Southwest China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!