A high performance gel permeation chromatography (HP-GPC) method was developed, validated and used to determine the molecular weight (MW) of sodium ferric gluconate following various stress conditions. The intra-day accuracy (90-103%), intra-day precision (1.5-2.7%), inter-day accuracy (91-105%), inter-day precision (1.3-3.2%) were within acceptable range stated in FDA guidance. The MW of sodium ferric gluconate remained unchanged after: (1) autoclaving (121 degrees C), (2) moderate thermal stress (30 days at 50 degrees C or 7 days at 70 and 90 degrees C), (3) excipient dilution, (4) basic buffer dilution (pH of 8 and 9), (5) ultracentrifugation, (6) dialysis, and (7) electrolyte dilution. However sodium ferric gluconate showed signs of instability at higher temperatures (>90 degrees C) after 30 days and at pH of 10-11. Sodium ferric gluconate was found to be a lypophilic colloidal solution with an average particle size of 10 nm and a zeta potential of -13 mV. The colloid osmotic pressure was 3.5 mmHg and remained unchanged after moderate thermal stress. Additionally, in-house drug products with similar MW to sodium ferric gluconate were produced by three different synthetic procedures, suggesting that this colloidal iron drug product might be thermodynamically stable.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jps.21806 | DOI Listing |
Clin Exp Pharmacol Physiol
February 2025
Department of Nephropathy, Xi'an Central Hospital, Xi'an, China.
Myocardial dysfunction is a crucial determinant of the development of heart failure in salt-sensitive hypertension. Ferroptosis, a programmed iron-dependent cell death, has been increasingly recognised as an important contributor to the pathophysiology of various cardiovascular diseases. This study aims to investigate the role and underlying mechanism of ferroptosis in high-salt (HS)-induced myocardial damage.
View Article and Find Full Text PDFInt J Hematol
December 2024
Department of Hematology, Juntendo University Graduate School of Medicine, 2-1-1, Hongo, Bunkyo-Ku, Tokyo, 113-8421, Japan.
We investigated the cost-effectiveness of treating iron deficiency anemia (IDA) with ferric citrate hydrate (FC) in Japan. We employed four treatment strategies: switching from sodium ferrous citrate (SF) to FC at (1) 500 mg (approximately 120 mg of iron) per day or (2) 1000 mg (approximately 240 mg of iron) per day in patients with SF-induced nausea/vomiting, or starting treatment with FC at (3) 500 mg/day or (4) 1000 mg/day. We evaluated the cost-effectiveness of these strategies compared with SF 100 mg (100 mg of iron) per day.
View Article and Find Full Text PDFJ Adv Res
December 2024
Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China. Electronic address:
Introduction: Iron overload disrupts gut microbiota and induces ferroptosis, contributing to colitis. However, whether gut microbiota directly drives iron overload-induced colitis and its underlying mechanism remain unclear.
Objectives: The study aimed to explore whether gut microbiota can directly regulate iron overload-induced colitis and its underling mechanism.
Molecules
November 2024
BioMedical Research Centre, Norwich Medical School, University of East Anglia, Norwich NR4 7TJ, UK.
Salinomycin and its derivatives display promising anti-proliferating activity against bloodstream forms of . The mechanism of trypanocidal action of these compounds is due to their ionophoretic activity inducing an influx of sodium cations followed by osmotic water uptake, leading to massive swelling of bloodstream-form trypanosomes. Generally, higher trypanocidal activities of salinomycin derivatives are associated with higher cell swelling activities.
View Article and Find Full Text PDFBiomolecules
November 2024
Department of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University, Daegu 41566, Republic of Korea.
Nitrogen fixation in legume nodules is crucial for plant growth and development. Therefore, this study aims to investigate the effects of nitric oxide [S-nitrosoglutathione (GSNO)] and silicon [sodium metasilicate (Si)], both individually and in combination, on soybean growth, nodule formation, leghaemoglobin (Lb) synthesis, and potential post-translational modifications. At the V1 stage, soybean plants were treated for 2 weeks with 150 µM GSNO, and Si at concentrations of 1 mM, 2 mM, and 4 mM.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!