Physico-chemical parameters of membranes of skeletal muscles' sarcoplasmic reticulum in antioxidant insufficiency, which was modelled by excluding alpha-tocopherol from the animals ration, and after treatment with phenol antioxidant ionol were studied. It was shown that activation of lipid peroxidation in vitamin E insufficiency results in a significant lowering of microviscosity of lipid bilayer membranes of sarcoplasmic reticulum. Using polarography significant changes in membrane protein conformation were revealed, which were characterized by lowering of integrity and by disorganization of protein globules. Treatment of animals with antioxidant insufficiency with ionol led to certain normalization of changes of physico-chemical characteristics of the learned membrane structures caused by lipid peroxidation.

Download full-text PDF

Source

Publication Analysis

Top Keywords

sarcoplasmic reticulum
16
reticulum antioxidant
8
antioxidant insufficiency
8
lipid peroxidation
8
[peroxide modification
4
modification skeletal
4
skeletal muscle
4
sarcoplasmic
4
muscle sarcoplasmic
4
reticulum
4

Similar Publications

Cholinergic tone is elevated in obstructive lung conditions such as COPD and asthma, but the cellular mechanisms underlying cholinergic contractions of airway smooth muscle (ASM) are still unclear. Some studies report an important role for L-type Ca channels (LTCC) and Ano1 Ca-activated Cl™ channels (CACC) in these responses, but others dispute their importance. Cholinergic contractions of ASM involve activation of M3Rs, however stimulation of M2Rs exerts a profound hypersensitisation of these responses.

View Article and Find Full Text PDF

Injured or atrophied adult skeletal muscles are regenerated through terminal differentiation of satellite cells to form multinucleated muscle fibers. Transplantation of satellite cells or cultured myoblasts has been used to improve skeletal muscle regeneration. Some of the limitations observed result from the limited number of available satellite cells that can be harvested and the efficiency of fusion of cultured myoblasts with mature muscle fibers (i.

View Article and Find Full Text PDF

Over 200 point mutations in the ryanodine receptor (RyR2) of the cardiac sarcoplasmic reticulum (SR) are known to be associated with cardiac arrhythmia. We have already reported on the calcium signaling phenotype of a point mutation in RyR2 Ca binding site Q3925E expressed in human stem-cell-derived cardiomyocytes (hiPSC-CMs) that was found to be lethal in a 9-year-old girl. CRISPR/Cas9-gene-edited mutant cardiomyocytes carrying the RyR2-Q3925E mutation exhibited a loss of calcium-induced calcium release (CICR) and caffeine-triggered calcium release but continued to beat arrhythmically without generating significant SR Ca release, consistent with a remodeling of the calcium signaling pathway.

View Article and Find Full Text PDF

Urolithin A Protects Hepatocytes from Palmitic Acid-Induced ER Stress by Regulating Calcium Homeostasis in the MAM.

Biomolecules

November 2024

Chemical Genomics Leader Research Laboratory, Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea.

An ellagitannin-derived metabolite, Urolithin A (UA), has emerged as a potential therapeutic agent for metabolic disorders due to its antioxidant, anti-inflammatory, and mitochondrial function-improving properties, but its efficacy in protecting against ER stress remains underexplored. The endoplasmic reticulum (ER) is a cellular organelle involved in protein folding, lipid synthesis, and calcium regulation. Perturbations in these functions can lead to ER stress, which contributes to the development and progression of metabolic disorders such as metabolic-associated fatty liver disease (MAFLD).

View Article and Find Full Text PDF

Ultrastructural Remodeling of Cardiomyocytes in Postinfarction Myocardium of Rats in the Late Stages of the Disease.

Cytometry A

December 2024

Laboratory of Hyperspectral Imaging of Surgical Targets, Center of Excellence, L.A. Orbeli Institute of Physiology, National Academy of Sciences, Yerevan, Armenia.

Identifying factors that contribute to the transition to the dilated phase in cardiac ischemia is a critical challenge in heart failure treatment. Currently, no effective therapies exist for this ischemic complication, and the mechanisms driving left ventricular dilatation during chronic post-infarction remodeling remain poorly understood. One potential pathological process leading to ventricular dilatation involves specific compensatory rearrangements in the border zone adjacent to the infarct, which isolates the intact myocardium from inflammation at the scar edge.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!