AI Article Synopsis

  • Research shows that in animals, the trigeminal brainstem sensory nuclear complex processes non-painful and painful (nociceptive) information differently, but it's unclear if this applies to humans.
  • A study using fMRI revealed that during skin pain, activity increased across the entire spinal trigeminal nucleus, while muscle pain activated specific areas only.
  • The findings suggest that the brain processes pain from skin and muscle differently, which may help explain the varying effects of these types of pain on perception and behavior.

Article Abstract

There is good evidence from animal studies for segregation in the processing of non-nociceptive and nociceptive information within the trigeminal brainstem sensory nuclear complex. However, it remains unknown whether a similar segregation occurs in humans, and a recent tract tracing study suggests that this segregation may not exist. We used functional magnetic resonance imaging (fMRI) to define and compare activity patterns of the trigeminal brainstem nuclear complex during non-noxious and noxious cutaneous and non-noxious and noxious muscle orofacial stimulation in humans. We found that during cutaneous pain, signal intensity increased within the entire rostrocaudal extent of the spinal trigeminal nucleus (SpV), encompassing the ipsilateral oralis (SpVo), interpolaris (SpVi) and caudalis (SpVc) subdivisions. In contrast, muscle pain did not activate SpVi, but instead activated a discrete region of the ipsilateral SpVo and SpVc. Further, muscle noxious stimulation activated a region of the ipsilateral lateral pons in the region of the trigeminal principal sensory nucleus (Vp). Innocuous orofacial stimulation (lip brushing) also evoked a significant increase in signal intensity in the ipsilateral Vp; however, non-noxious muscle stimulation showed no increase in signal in this area. The data reveal that orofacial cutaneous and muscle nociceptive information and innocuous cutaneous stimulation are differentially represented within the trigeminal nuclear complex. It is well established that cutaneous and muscle noxious stimuli evoke different perceptual, behavioural and cardiovascular changes. We speculate that the differential activation evoked by cutaneous and muscle noxious stimuli within the trigeminal sensory complex may contribute to the neural basis for these differences.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6871097PMC
http://dx.doi.org/10.1002/hbm.20805DOI Listing

Publication Analysis

Top Keywords

nuclear complex
16
orofacial stimulation
12
muscle noxious
12
cutaneous muscle
12
differential activation
8
trigeminal nuclear
8
trigeminal brainstem
8
non-noxious noxious
8
signal intensity
8
region ipsilateral
8

Similar Publications

Magnetic Resonance Imaging (MRI) safety is a critical concern in the Asia-Oceania region, as it is elsewhere in the world, due to the unique and complex MRI environment that demands attention. This call-for-action outlines ten critical steps to enhance MRI safety and promote a culture of responsibility and accountability in the Asia-Oceania region. Key focus areas include strengthening education and expertise, improving quality assurance, fostering collaboration, increasing public awareness, and establishing national safety boards.

View Article and Find Full Text PDF

Palmitate potentiates the SMAD3-PAI-1 pathway by reducing nuclear GDF15 levels.

Cell Mol Life Sci

January 2025

Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, Unitat de Farmacologia, Universitat de Barcelona, Av. Joan XXIII 27-31, 08028, Barcelona, Spain.

Nuclear growth differentiation factor 15 (GDF15) reduces the binding of the mothers' against decapentaplegic homolog (SMAD) complex to its DNA-binding elements. However, the stimuli that control this process are unknown. Here, we examined whether saturated fatty acids (FA), particularly palmitate, regulate nuclear GDF15 levels and the activation of the SMAD3 pathway in human skeletal myotubes and mouse skeletal muscle, where most insulin-stimulated glucose use occurs in the whole organism.

View Article and Find Full Text PDF

Mapping the chemical reaction pathways and their corresponding activation barriers is a significant challenge in molecular simulation. Given the inherent complexities of 3D atomic geometries, even generating an initial guess of these paths can be difficult for humans. This paper presents an innovative approach that utilizes neural networks to generate initial guesses for reaction pathways based on the initial state and learning from a database of low-energy transition paths.

View Article and Find Full Text PDF

Background: While vaccination remains crucial in mitigating the impact of the COVID-19 pandemic, several ocular adverse events has been reported, including Acute Zonal Occult Outer Retinopathy (AZOOR) complex.

Case Presentation: A 31-year-old female presented declined best corrected visual acuity (BCVA) and flashes in both eyes three days following second recombinant mRNA COVID-19 vaccine (Moderna). Fundus autofluorescence (FAF) illustrated speckled hyper-AF lesions surrounding right eye torpedo maculopathy site and hyper-AF lesions in the left macula.

View Article and Find Full Text PDF

The development of optical sensors for label-free quantification of cell parameters has numerous uses in the biomedical arena. However, using current optical probes requires the laborious collection of sufficiently large datasets that can be used to calibrate optical probe signals to true metabolite concentrations. Further, most practitioners find it difficult to confidently adapt black box chemometric models that are difficult to troubleshoot in high-stakes applications such as biopharmaceutical manufacturing.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!