The biology of gonadotroph regulation.

Curr Opin Endocrinol Diabetes Obes

Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital and Harvard Medical School, 221 Longwood Avenue, Boston, Massachusetts 02115, USA.

Published: August 2009

Purpose Of Review: To discuss recent progress in our understanding of pituitary gonadotroph development and gonadotropin gene regulation, with an emphasis on differential luteinizing hormone (LH) and follicle-stimulating hormone (FSH) secretion and subunit synthesis, and the implications this may have on female reproductive health.

Recent Findings: In the mature gonadotroph, there is an emerging concept that differential synthesis of gonadotropin beta-subunit genes, essential for cyclic reproductive function, is associated with modification of activation and/or stability of important regulatory proteins and transcription factors. Recent studies suggest that cellular events, which affect histone modification, play an essential role in both gonadotroph development and the ontogeny of gonadotropin subunit gene expression. Such dynamic events are under the orchestration of the hypothalamic neuropeptide gonadotropin-releasing hormone (GnRH), potentially through the ability of GnRH to activate several distinct signaling cascades within the gonadotroph.

Summary: Greater insight into the cellular events that are key to gonadotroph physiology will contribute to our understanding of abnormal gonadotropin secretion in disorders such as hypothalamic amenorrhea and polycystic ovarian syndrome (PCOS), and provide a context for the design of novel therapeutic approaches.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2862266PMC
http://dx.doi.org/10.1097/MED.0b013e32832d88fbDOI Listing

Publication Analysis

Top Keywords

gonadotroph development
8
cellular events
8
biology gonadotroph
4
gonadotroph regulation
4
regulation purpose
4
purpose review
4
review discuss
4
discuss progress
4
progress understanding
4
understanding pituitary
4

Similar Publications

Exposure to environmentally relevant levels of DEHP during development modifies the distribution and expression patterns of androgen receptors in the anterior pituitary in a sex-specific manner.

Chemosphere

January 2025

Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Instituto de Investigaciones en Ciencias de La Salud (INICSA), Córdoba, Argentina; Universidad Nacional de Córdoba, Facultad de Ciencias Médicas, Centro de Microscopía Electrónica. Córdoba, Argentina. Electronic address:

DEHP is a prevalent phthalate with wide industrial applications and well-documented endocrine-disrupting effects, including the potential disruption of AR signaling in different tissues. The present study aimed to investigate the effects of gestational and lactational exposure to environmentally relevant DEHP concentrations on AR expression and subcellular localization in the pituitary gland, the master endocrine organ, with a focus on gonadotroph cells by in vivo and in vitro approaches. After DEHP exposure during gestation and lactation, a sex-specific modulation was detected in AR-positive pituitary cells and AR protein expression as assessed through flow cytometry and western blot.

View Article and Find Full Text PDF

GnRH pulse generator activity in mouse models of polycystic ovary syndrome.

Elife

January 2025

Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom.

Article Synopsis
  • One in ten women of reproductive age have PCOS, characterized by subfertility, high LH levels, and potential dysfunction in the kisspeptin neurons that regulate GnRH.
  • Researchers studied the GnRH pulse generator in two mouse models of PCOS: the peripubertal androgen (PPA) model showed fewer synchronized neuron events, while the prenatal androgen (PNA) model revealed variable GnRH activity but cyclical patterns indicating complexity.
  • Findings indicate that in the PNA model, ARN neurons had increased activity during specific stages and less sensitivity to progesterone, highlighting the need to understand GnRH regulation in PCOS-related conditions.
View Article and Find Full Text PDF

The satiety hormone cholecystokinin gates reproduction in fish by controlling gonadotropin secretion.

Elife

December 2024

Department of Animal Sciences, The Robert H. Smith Faculty of Agriculture, Food, and Environment, Hebrew University of Jerusalem, Rehovot, Israel.

Life histories of oviparous species dictate high metabolic investment in the process of gonadal development leading to ovulation. In vertebrates, these two distinct processes are controlled by the gonadotropins follicle-stimulating hormone (FSH) and luteinizing hormone (LH), respectively. While it was suggested that a common secretagogue, gonadotropin-releasing hormone (GnRH), oversees both functions, the generation of loss-of-function fish challenged this view.

View Article and Find Full Text PDF

Background: Pituitary neuroendocrine tumors (PitNET) are among the most common intracranial tumors. Despite a frequent benign course, aggressive behavior can occur. Tumor behavior is known to be under the influence of the tumor microenvironment (TME).

View Article and Find Full Text PDF

Assessment of risk factors associated with post-molar gestational trophoblastic neoplasia: a retrospective cohort.

Rev Bras Ginecol Obstet

November 2024

Universidade Estadual de Campinas CampinasSP Brazil Universidade Estadual de Campinas, Campinas, SP, Brazil.

Objective: Evaluate the risk factors for the development of post-molar gestational trophoblastic neoplasia.

Methods: Retrospective cohort study with 320 women with gestational trophoblastic disease (GTD) followed in a tertiary hospital from January 2005 to January 2020. Data referring to the women's sociodemographic profile, clinical, laboratory and treatment aspects and types of GTD were analyzed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!