Alzheimer's disease (AD) is a neurodegenerative disorder characterized by a low amount of acetylcholine (ACh) in hippocampus and cortex. Acetylcholinesterase (AChE) is one of the most important enzymes in many living organisms including human being and other vertebrates, insects like mosquitoes, among others. Several reports have been published where it has been clearly shown that the genesis of amyloid protein plaques associated with AD is connected to modifications of both AChE and butyrylcholinesterase (BChE), since the plaque is significantly decreased in AD patients using cholinesterase inhibitors (ChEIs). This review gives some examples of these inhibitors discovered during past couple of years that have shown very prominent interactions at the active site triad of the proteins as well as different other parts of the active site like, peripheral anionic site (PAS), oxyanionic hole, anionic subsite or acyl binding pocket (ABP). Most of the inhibition and their interactions have been visualized by X-ray crystallography, but some of the other inhibitors have been studied either by molecular docking or molecular dynamic (MD) simulations or by both the in silico methods. Some of these prominent studies have been crucially observed and reported here.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.nbt.2009.03.008 | DOI Listing |
Front Neurosci
December 2024
School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China.
Introduction: Traditional extraocular electrical stimulation typically produces diffuse electric fields across the retina, limiting the precision of targeted therapy. Temporally interfering (TI) electrical stimulation, an emerging approach, can generate convergent electric fields, providing advantages for targeted treatment of various eye conditions.
Objective: Understanding how detailed structures of the retina, especially the optic nerve, affects electric fields can enhance the application of TI approach in retinal neurodegenerative and vascular diseases, an essential aspect that has been frequently neglected in previous researches.
Front Chem
December 2024
Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Faculty of Sciences, Mohammed First University, Oujda, Morocco.
Ethnopharmacological Relevance: In Moroccan traditional medicine, plants from the Apiaceae family are widely utilized in folk medicine to treat various diseases associated with the digestive system. plays an important role as an antispasmodic that has been traditionally used, especially to treat digestive tract diseases in children.
Aim Of The Study: The aim of this research was to verify the traditional use by assessing the relaxant and spasmolytic activities of essential oil (ALEO) and then comparing them to the effects and potency of the major constituent of ALEO, which is perillaldehyde.
The interaction between meiosis-expressed gene 1 (MEIG1) and Parkin co-regulated gene (PACRG) is a critical determinant of spermiogenesis, the process by which round spermatids mature into functional spermatozoa. Disruption of the MEIG1-PACRG complex can impair sperm development, highlighting its potential as a therapeutic target for addressing male infertility or for the development of non-hormonal contraceptive methods. This study used virtual screening, molecular docking, and molecular dynamics (MD) simulations to identify small molecule inhibitors targeting the MEIG1-PACRG interface.
View Article and Find Full Text PDFConnections between the mechanical properties of DNA and biological functions have been speculative due to the lack of methods to measure or predict DNA mechanics at scale. Recently, a proxy for DNA mechanics, cyclizability, was measured by loop-seq and enabled genome-scale investigation of DNA mechanics. Here, we use this dataset to build a computational model predicting bias-corrected intrinsic cyclizability, with near-perfect accuracy, solely based on DNA sequence.
View Article and Find Full Text PDFFront Immunol
January 2025
Blood Group Reference Laboratory, Dalian Blood Center, Dalian, China.
Background: Mutations in the ABO gene, including base insertions, deletions, substitutions, and splicing errors, can result in blood group subgroups associated with the quantity and quality of blood group antigens. Here, we employed third-generation PacBio sequencing to uncover a novel allele arising from an intron splice site mutation, which altered the expected A phenotype to manifest as an Ael phenotype. The study aimed to characterize the molecular mechanism underlying this phenotypic switch.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!