In vitro biorelevant dissolution tests enabling the prediction of in vivo performance of an oral modified-release (MR) dosage form were developed in this study. In vitro dissolution of MR diclofenac sodium pellets containing 100mg active ingredient was evaluated under simulated pre- and postprandial conditions using USP Apparatus 3 (reciprocating cylinder, Bio-Dis) and 4 (flow-through cell) and results compared with compendial methods using USP Apparatus 1 (basket) and 2 (paddle). In vivo, the effects of food on the absorption of diclofenac sodium from the pellet dosage form were investigated by administering the product to 16 healthy volunteers pre- and postprandially in a crossover-design study. The in vitro results were compared with the in vivo data by means of Level A in vitro-in vivo correlation (IVIVC) and Weibull distribution analysis. The compendial dissolution tests were not able to predict food effects. The biorelevant dissolution tests predicted correctly that the release (and hence absorption) of diclofenac sodium would be slower in the fed state than in the fasted state. No significant differences in extent of absorption due to changes in extent of release were predicted or observed. The results demonstrate good correlations between in vitro drug release and in vivo drug absorption in both pre- and postprandial states using the biorelevant dissolution test methods.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejps.2009.03.015DOI Listing

Publication Analysis

Top Keywords

biorelevant dissolution
16
dissolution tests
16
diclofenac sodium
16
dosage form
12
prediction vivo
8
vivo performance
8
oral modified-release
8
pellet dosage
8
study vitro
8
pre- postprandial
8

Similar Publications

Purpose: Supersaturated formulations have been widely explored for improving the oral bioavailability of drugs by using mesoporous silica (MS) to generate supersaturation molecular adsorption; however, this is followed by precipitation. Several precipitation inhibitors (PI) have been explored to prevent precipitation and maintain the drug in solution for a longer period. However, the combined approach of MS and PIs, the impact of MS and Silica, and the loading of high-molecular-weight neutral molecules such as Cyclosporine A (CsA) have not yet been explored.

View Article and Find Full Text PDF

Advantages of the refined Developability Classification System (rDCS) in early discovery.

J Pharm Sci

December 2024

Janssen Research & Development, LLC, Discovery Pharmaceutics, San Diego, CA, USA.

Rat pharmacokinetic studies are commonly utilized in early discovery to support absorption, distribution, metabolism, and excretion optimization of active pharmaceutical ingredients (APIs). The aim of this work was to compare exposures from fit-for-purpose oral suspension and solution formulations in rats to guidance provided by the refined Developability Classification System (rDCS) with respect to identifying potential limits to oral absorption, formulation strategy selection, and to optimize oral bioavailability (BA). This investigation utilized six diverse APIs covering a large range of biorelevant solubility, metabolic stability, and oral BA in rats.

View Article and Find Full Text PDF

For compendial dissolution testing of solid dosage forms, media volumes of 500 to 900 mL are used in apparatus I and II to ensure sink conditions. However, these volumes are considerably larger than those in the gastrointestinal tract. Thus, the experiments are not biomimetic and possibly not suitable for biopredictive dissolution testing.

View Article and Find Full Text PDF

A slight variation in in vivo exposure for tacrolimus extended-release (ER) capsules, which have a narrow therapeutic index (NTI), significantly affects the pharmacodynamics of the drug. Generic drug bioequivalence (BE) standards are stricter, necessitating accurate assessment of the rate and extent of drug release. Therefore, an in vitro dissolution method with high in vivo predictive power is crucial for developing generic drugs.

View Article and Find Full Text PDF

Pimozide and Adipic Acid: A New Multicomponent Crystalline Entity for Improved Pharmaceutical Behavior.

Molecules

November 2024

Department of Chemistry, Physical Chemistry Section & C.S.G.I. (Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande Interfase), University of Pavia, Via Taramelli 16, 27100 Pavia, Italy.

Pimozide is a first-generation antipsychotic used in the treatment of schizophrenia, Gilles de la Tourette syndrome, and other chronic psychoses. Its in vivo efficacy is limited by poor solubility and consequent poor bioavailability. Therefore, adipic acid was used as a coformer for the preparation of a binary product with improved pharmaceutical properties.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!