A genome-wide RNAi screen identifies multiple synthetic lethal interactions with the Ras oncogene.

Cell

Howard Hughes Medical Institute and Department of Genetics, Harvard Medical School, Division of Genetics, Brigham and Women's Hospital, Boston, MA 02115, USA.

Published: May 2009

Oncogenic mutations in the small GTPase Ras are highly prevalent in cancer, but an understanding of the vulnerabilities of these cancers is lacking. We undertook a genome-wide RNAi screen to identify synthetic lethal interactions with the KRAS oncogene. We discovered a diverse set of proteins whose depletion selectively impaired the viability of Ras mutant cells. Among these we observed a strong enrichment for genes with mitotic functions. We describe a pathway involving the mitotic kinase PLK1, the anaphase-promoting complex/cyclosome, and the proteasome that, when inhibited, results in prometaphase accumulation and the subsequent death of Ras mutant cells. Gene expression analysis indicates that reduced expression of genes in this pathway correlates with increased survival of patients bearing tumors with a Ras transcriptional signature. Our results suggest a previously underappreciated role for Ras in mitotic progression and demonstrate a pharmacologically tractable pathway for the potential treatment of cancers harboring Ras mutations.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2768667PMC
http://dx.doi.org/10.1016/j.cell.2009.05.006DOI Listing

Publication Analysis

Top Keywords

genome-wide rnai
8
rnai screen
8
synthetic lethal
8
lethal interactions
8
ras mutant
8
mutant cells
8
ras
7
screen identifies
4
identifies multiple
4
multiple synthetic
4

Similar Publications

Inactivation of TACC2 epigenetically represses CDKN1A and confers sensitivity to CDK inhibitors.

Med

January 2025

State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China. Electronic address:

Background: The genomic landscape of esophageal squamous cell carcinoma (ESCC) has been characterized extensively, but there remains a significant need for actionable targets and effective therapies.

Methods: Here, we perform integrative analysis of genome-wide loss of heterozygosity and expression to identify potential tumor suppressor genes. The functions and mechanisms of one of the candidates, TACC2, are then explored both in vitro and in vivo, leading to the proposal of a therapeutic strategy based on the concept of synthetic lethality.

View Article and Find Full Text PDF

Neuropeptides are pivotal in regulating a broad spectrum of developmental, physiological, and behavioral processes throughout the life cycle of crustaceans. In this comprehensive study, we utilized a multiomics approach to characterize neuropeptide precursors and to assess the expression profiles of neuropeptide-encoding genes across various tissues and developmental stages in the Pacific white shrimp, . Additionally, we explored the differential expression of neuropeptide genes in the eyestalk before and after the RNA interference-mediated suppression of crustacean hyperglycemic hormone (CHH) and vitellogenesis-inhibiting hormone (VIH) gene expression.

View Article and Find Full Text PDF

The death and clearance of nurse cells is a consequential milestone in Drosophila melanogaster oogenesis. In preparation for oviposition, the germline-derived nurse cells bequeath to the developing oocyte all their cytoplasmic contents and undergo programmed cell death. The death of the nurse cells is controlled non-autonomously and is precipitated by epithelial follicle cells of somatic origin acquiring a squamous morphology and acidifying the nurse cells externally.

View Article and Find Full Text PDF

Although genome-wide association studies (GWASs) have identified dozens of loci associated with colorectal cancer (CRC) susceptibility, the causal genes or risk variants within these loci and their biological functions often remain elusive. Recently, the genomic locus 12p13.32, with the tag SNP rs10774214, was identified as a crucial CRC risk locus in Asian populations.

View Article and Find Full Text PDF

Genome-wide analysis of C2H2.2 gene family in Populus Trichocarpa and the function exploration of PtrC2H2.2-6 in osmotic stress.

Int J Biol Macromol

December 2024

National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River, Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu 611130, China. Electronic address:

Article Synopsis
  • * This study identified 109 C2H2 genes, focusing on the PtrC2H2.2 subfamily, which underwent significant evolutionary changes, suggesting its importance in plant stress responses.
  • * The key finding reveals that the PtrC2H2.2-6 gene plays a negative regulatory role in osmotic stress; plants with reduced expression of this gene have better tolerance, pointing to potential genetic approaches for developing drought-resistant trees.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!