Cyclic hydrostatic pressure and cotton particles stimulate synthesis by human lung macrophages of cytokines in vitro.

Respir Res

Tissue Injury and Repair Group, School of Clinical and Laboratory Sciences, Faculty of Medical and Human Sciences, University of Manchester, Manchester M13 9PT, UK.

Published: June 2009

Background: Inhalation of particulates is a leading cause of the development of lung diseases and current understanding of the complex relationship between lung metabolism and airborne particulates is incomplete. It is well established that mechanical load is important in the development of the lung and in lung cell differentiation. The interaction between particle exposure and physical forces on alveolar macrophages is a physiologically relevant issue, but as yet understudied. This study examines the effect of cyclic hydrostatic pressure and cotton particles on synthesis of cytokines by human alveolar macrophages.

Methods: Alveolar macrophages were obtained from patients with lung disease, either from lavage samples or from lung tissue resection. The commonly used cell line THP-1 was included in the experiments. Cell cultures were exposed to cotton particles and/cyclic hydrostatic pressure (3 or 5 psi); control cultures were exposed to medium only. TNFalpha, IL-1beta and IL-6 were assayed in the culture media using specific ELISAs. Cells were characterized using morphology and markers specific for macrophages (Jenner/Giemsa staining, CD14 and CD68).

Results: Exposure to cotton particles stimulated cytokine synthesis by macrophages from all three sources; exposure to cyclic hydrostatic pressure alone did not stimulate cytokine synthesis significantly. However, the combination of both particles and cyclic hydrostatic pressure increased the simulation of cytokine synthesis still further. Cell characterization demonstrated that the large majority of cells had a macrophage morphology and were positive for CD14 and CD68.

Conclusion: These data suggest an interaction between cyclic hydrostatic pressure and particulate exposure, which increases alveolar macrophage cytokine production. This interaction was only observed at the higher cyclic hydrostatic pressure. However, in patient samples, there was considerable variation in the amount by which secretion of an individual cytokine increased and there was also variation in the mechanosensitivity of cells from the three different sources. Cyclic hydrostatic pressure, therefore, may be an important modulator of the response of alveolar macrophages to cotton particles, but the source of the cells may be a confounding factor which demands further investigation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2708140PMC
http://dx.doi.org/10.1186/1465-9921-10-44DOI Listing

Publication Analysis

Top Keywords

hydrostatic pressure
32
cyclic hydrostatic
28
cotton particles
20
alveolar macrophages
12
cytokine synthesis
12
pressure
8
pressure cotton
8
development lung
8
cultures exposed
8
three sources
8

Similar Publications

Auxiliary metabolic genes encoded by bacteriophages can influence host metabolic function during infection. In temperate phages, auxiliary metabolic genes may increase host fitness when integrated as prophages into the host genome. However, little is known about the contribution of prophage-encoded auxiliary metabolic genes to host metabolic properties.

View Article and Find Full Text PDF

To simulate the effects of high pressure on molecular and electronic structure, methods based on the polarizable continuum model have emerged as a serious contender to the conventionally employed periodic boundary conditions. In this work, we present a highly efficient integral-direct algorithm for the Gaussians On Surface Tesserae Simulate HYdrostatic Pressure (GOSTSHYP) method. We examine the efficiency of this implementation on large chains of α-d-glucose units.

View Article and Find Full Text PDF

Based on the symmetric initiation mechanism of double-wing cracks in coal rock mass induced by high-pressure electro-recoil water pressure, fracturing experiments have been performed on coal rock mass under different water pressures and discharge conditions using high-voltage electric pulse hydraulic fracturing devices. Combined with CT scans, the crack spatial distribution inside the post-break coal rock mass was analyzed and found that the edge of the water injection hole is prone to produce double-wing cracks along the drilling hole diameter. ABAQUS is used to verify the physical test and extend the test conditions, the geometric parameter change, morphological expansion rule and crack initiation mechanism of double-wing crack in coal rock mass under different discharge conditions and ground stress conditions are studied.

View Article and Find Full Text PDF

Degenerated vision, altered lipid metabolism, and expanded chemoreceptor repertoires enable Lindaspio polybranchiata to thrive in deep-sea cold seeps.

BMC Biol

January 2025

CAS Key Laboratory of Marine Ecology and Environmental Sciences, and Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.

Background: Lindaspio polybranchiata, a member of the Spionidae family, has been reported at the Lingshui Cold Seep, where it formed a dense population around this nascent methane vent. We sequenced and assembled the genome of L. polybranchiata and performed comparative genomic analyses to investigate the genetic basis of adaptation to the deep sea.

View Article and Find Full Text PDF

Animals alter their behavior in response to changes in the environment. Upon encountering hyperosmotic conditions, the nematode worm initiates avoidance and cessation of egg-laying behavior. While the sensory pathway for osmotic avoidance is well-understood, less is known about how egg laying is inhibited.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!