Carcinoma with a large central acellular zone (central acellular carcinoma, CAC) and matrix-producing carcinoma (MPC) have been recently noted as basal-like-type breast cancers, but the two entities are often confused. To clarify their histological differences, the histopathological sections of 15 CAC and seven MPC were examined and the following features were compared by reviewing slides: (i) mode of invasion; (ii) alteration of cancer cell adhesion in the transitional area between cellular and acellular zones; (iii) staining of the stromal matrix; (iv) lymphocyte infiltration; and (v) tumor grade. Complete agreement was required between two observers for the assessments of these features. All CAC had relatively sharp margins but showed infiltrative growth accompanied by eosinophilic intercellular matrix. In CAC there was abrupt transition between peripheral cellular and central acellular zones without alteration of cancer cell adhesion. In contrast, all MPC showed expansive growth with a well circumscribed margin, accompanied by basophilic and myxoid intercellular matrix. In MPC there was gradual transition from cellular to acellular areas with gradual loss of cancer cell adhesion. Histological grade 3 and peripheral lymphocyte infiltration were common features. It is suggested that CAC and MPC are histologically distinct entities, and that the aforementioned features are helpful for differential diagnosis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1440-1827.2009.02382.x | DOI Listing |
Introduction: The aim of this study was to assess the long-term impact and potential effectiveness of our specialized acellular dermal matrix (ADM) in a two-stage breast reconstruction process.
Objective: Opinions regarding the use of ADMs are currently divided. While their positive contribution to reconstructive breast surgery is evident, the results of studies vary depending on specific procedures, patient selection, and techniques employed.
Biomater Res
January 2025
Department of Orthopedics, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou 310000, China.
Large bone defects are still a persistent challenge in orthopedics. The availability limitations and associated complications of autologous and allogeneic bone have prompted an increasing reliance on tissue engineering and regenerative medicine. In this study, we developed an injectable scaffold combining an acellular extracellular periosteal matrix hydrogel with poly(d,l-lactate--glycol-acetate) microspheres loaded with the E7 peptide and miR217 (miR217/E7@MP-GEL).
View Article and Find Full Text PDFAm J Sports Med
January 2025
Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China.
Background: After surgical repair of rotator cuff (RC) tears, the torn tendon heals unsatisfactorily to the greater tuberosity owing to limited regeneration of the bone-tendon (BT) insertion. This situation motivates the need for new interventions to enhance BT healing in the RC repair site.
Purpose: To develop injectable fibrocartilage-forming cores by tethering fibroblast growth factor 18 (FGF18) on acellular fibrocartilage matrix microparticles (AFM-MPs) and evaluate their efficacy on BT healing.
BMC Cancer
December 2024
Department of Plastic Surgery, University College London, London, UK.
Introduction: Breast cancer is the leading cause of cancer amongst women in the United Kingdom, with implant-based reconstruction (IBR) using Acellular Dermal Matrices (ADM) gaining popularity for post-mastectomy procedures. This study compares outcomes of different ADMs that are commonly used in women undergoing IBR, this was short and long-term complications.
Methods: A systematic search of MEDLINE, Embase, CENTRAL, and CDSR databases was performed according to the PRISMA guidelines, focusing on women undergoing IBR with FlexHD, AlloDerm, Bovine, or Porcine ADMs.
BMC Urol
December 2024
Department of Cardiovascular Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, China.
Background: Current treatments for penile erectile structures reconstruction are limited and remain a great challenge in clinical practice. Tissue engineering techniques using different seed cells and scaffolds to construct a neo-tissue open promising avenues for penile erectile structures repair and replacement and show great promise in the restoration of: structure, mechanical property, and function which matches the original tissue.
Methods: A comprehensive literature review was conducted by accessing the NCBI PubMed, Cochrane, and Google Scholar databases from January 1, 1990, to January, 1, 2022 using the search terms "Tissue engineering, Corpus cavernosum (CC), Tunica albuginea (TA), Acellular Matrix, Penile Reconstruction".
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!