1. The idea that parasites can affect host diversity is pervasive, and the possibility that parasites can increase host diversity is of particular interest. In this review, we focus on diversity in the resistance of hosts to their parasites, and on the different ways in which parasites can increase or decrease this resistance diversity. 2. Theoretically, parasites can exert many different types of selection on host populations, which each have consequences for host diversity. Specifically, theory predicts that parasites can exert negative frequency-dependent selection (NFDS) and disruptive selection on resistance, both of which increase host diversity, as well as directional selection and stabilizing selection on resistance, both of which decrease host diversity. 3. Despite these theoretical predictions, most biologists think of only NFDS or directional selection for increased resistance in response to parasitism. Here, we present empirical support for all of these types of selection occurring in natural populations. Interestingly, several recent studies demonstrate that there is spatiotemporal variation in the type of selection that occurs (and, therefore, in the effects of parasitism on host diversity). 4. A key question that remains, then, is: What determines the type of parasite-mediated selection that occurs? Theory demonstrates that the answer to this question lies, at least in part, with trade-offs associated with resistance. Specifically, the type of evolution that occurs depends critically on the strength and shape of these trade-offs. This, combined with empirical evidence for a strong effect of environment on the shape and strength of trade-offs, may explain the observed spatiotemporal variation in parasite-mediated selection. 5. We conclude that spatiotemporal variation in parasite-driven evolution is likely to be common, and that this variation may be driven by ecological factors. We suggest that the feedback between ecological and evolutionary dynamics in host-parasite interactions is likely to be a productive area of research. In particular, studies addressing the role of ecological factors (e.g. productivity and predation regimes) in driving the outcome of parasite-mediated selection on host populations are warranted. Such studies are necessary if we are to understand the mechanisms underlying the observed variation in the effects of parasites on host diversity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1365-2656.2009.01568.x | DOI Listing |
Sci Adv
January 2025
Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba 305-8577, Japan.
Microb Genom
January 2025
Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, USA.
Members of the phylum inhabit a wide range of ecosystems including soils. We analysed the global patterns of distribution and habitat preferences of various lineages across major ecosystems (soil, engineered, host-associated, marine, non-marine saline and alkaline and terrestrial non-soil ecosystems) in 248 559 publicly available metagenomic datasets. Classes , , and were highly ubiquitous and showed a clear preference to soil over non-soil habitats, while classes and showed preferences to non-soil habitats.
View Article and Find Full Text PDFmBio
January 2025
Centre for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, Division of Microbial Ecology, University of Vienna, Vienna, Austria.
Unlabelled: In the gut, microRNAs (miRNAs) produced by intestinal epithelial cells are secreted into the lumen and can shape the composition and function of the gut microbiome. Crosstalk between gut microbes and the host plays a key role in irritable bowel syndrome (IBS) and inflammatory bowel diseases, yet little is known about how the miRNA-gut microbiome axis contributes to the pathogenesis of these conditions. Here, we investigate the ability of miR-21, a miRNA that we found decreased in fecal samples from IBS patients, to associate with and regulate gut microbiome function.
View Article and Find Full Text PDFmBio
January 2025
Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, USA.
Unlabelled: Pathogenic strains cause cholera using different mechanisms. O1 and O139 serogroup strains use the toxin-co-regulated pilus (TCP) and cholera toxin (CT) for intestinal colonization and to promote secretory diarrhea, while non-O1/non-O139 serogroup strains are typically non-toxigenic and use alternate virulence factors to cause a clinically similar disease. An O39 serogroup, TCP/CT-negative strain, named AM-19226, uses a type III secretion system (T3SS) to translocate more than 10 effector proteins into the host cell cytosol.
View Article and Find Full Text PDFMicrobiol Spectr
January 2025
Instituto de Biociências, Universidade Estadual Paulista (UNESP), Botucatu, Brazil.
is a pathogen that causes sporadic cases and outbreaks of diarrhea. The main virulence feature of this bacterium is the attaching and effacing (AE) lesion formation on infected intestinal epithelial cells, which is characterized by the formation of pedestal-like structures that are rich in F-actin. The Brazilian 1551-2 strain can recruit F-actin using both the Nck-dependent and the Nck-independent pathways, the latter of which uses an adaptor protein named Tir-cytoskeleton coupling protein (TccP/EspF).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!