Input-specific plasticity of N-methyl-D-aspartate receptor-mediated synaptic responses in neonatal rat motoneurons.

Eur J Neurosci

Program in Neuroscience, SUNY at Stony Brook, Stony Brook, Long Island, NY, USA.

Published: June 2009

Lumbar motoneurons can be activated monosynaptically by two glutamatergic synaptic inputs: the segmental dorsal root (DR) and the descending ventrolateral funiculus (VLF). To determine whether their N-methyl-d-aspartate (NMDA) receptors are independent, we used (5R,10S)-(+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine-hydrogen-maleate (MK-801), known to induce a use-dependent irreversible block of NMDA receptors (NMDARs). In the presence of MK-801 (in bath) and non-NMDA antagonists (in bath, to isolate NMDARs pharmacologically), we first stimulated the DR. After MK-801 blockade of DR synaptic input, the VLF was stimulated. Its response was found to be not significantly different from its control value, suggesting that the DR stimulus activated very few, if any, receptors also activated by VLF stimulation. Similar findings were obtained if the stimulation order was reversed. Both inputs also elicited a polysynaptic NMDAR-mediated response. Evoking the DR polysynaptic response in the presence of MK-801 eliminated the corresponding VLF response; the reverse did not occur. Surprisingly, when MK-801 was washed from the bath, both the DR and the VLF responses could recover, although the recovery of the DR monosynaptic and polysynaptic responses was reliably greater than those associated with the VLF. Recovery was prevented if extrasynaptic receptors were activated by bath-applied NMDA in the presence of MK-801, consistent with the possibility that recovery was due to movement of extrasynaptic receptors into parts of the membrane accessible to transmitter released by DR and VLF stimulation. These novel findings suggest that segmental glutamatergic inputs to motoneurons are more susceptible to plastic changes than those from central nervous system white matter inputs at this developmental stage.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2931593PMC
http://dx.doi.org/10.1111/j.1460-9568.2009.06769.xDOI Listing

Publication Analysis

Top Keywords

presence mk-801
12
nmda receptors
8
receptors activated
8
vlf stimulation
8
extrasynaptic receptors
8
vlf
7
mk-801
6
receptors
5
input-specific plasticity
4
plasticity n-methyl-d-aspartate
4

Similar Publications

Aging affects virtually all organs of the body, but perhaps it has the most profound effects on the brain and its neurotransmitter systems, which influence a wide range of crucial functions, such as attention, focus, mood, neuroendocrine and autonomic functions, and sleep cycles. All of these essential functions, as well as fundamental cognitive processes such as memory, recall, and processing speed, utilize neuronal circuits that depend on neurotransmitter signaling between neurons. Glutamate (Glu), the main excitatory neurotransmitter in the CNS, is involved in most neuronal excitatory functions, including release of the neurotransmitter norepinephrine (NE).

View Article and Find Full Text PDF

One aspect of reproducibility in preclinical research that is frequently overlooked is the physical condition in which physiological, pharmacological, or behavioural recordings are conducted. In this study, the physical conditions of mice were altered through the attachments of wireless electrophysiological recording devices (Neural Activity Tracker-1, NAT-1). NAT-1 devices are miniaturised multichannel devices with onboard memory for direct high-resolution recording of brain activity for >48 h.

View Article and Find Full Text PDF
Article Synopsis
  • N-methyl-D-aspartate receptors (NMDARs) are crucial in various CNS disorders, with current treatments like memantine and ketamine having limitations and side effects.
  • Researchers aimed to create a new NMDAR open-channel blocker, K2060, which displays unique inhibitory properties and stronger effectiveness than existing drugs at inhibiting specific NMDAR subtypes.
  • K2060 showed promising results in a mouse model, reducing excitatory postsynaptic currents significantly and exhibiting a good safety profile, suggesting its potential as a treatment for NMDAR-related CNS disorders.
View Article and Find Full Text PDF

In an effort to further understand the challenges facing in vivo imaging probe development for the N-methyl-D-aspartate (NMDA) receptor ion channel, we have evaluated the effect of glutamate on the Alzheimer's disease (AD) brain. Human post-mortem AD brain slices of the frontal cortex and anterior cingulate were incubated with [H]MK-801 and adjacent sections were tested for Aβ and Tau. The binding of [H]MK-801 was measured in the absence and presence of glutamate and glycine.

View Article and Find Full Text PDF

Genomic and Reverse Translational Analysis Discloses a Role for Small GTPase RhoA Signaling in the Pathogenesis of Schizophrenia: Rho-Kinase as a Novel Drug Target.

Int J Mol Sci

October 2023

Department of Neuropsychopharmacology and Hospital Pharmacy, Graduate School of Medicine, Nagoya University, Nagoya 466-8560, Japan.

Schizophrenia is one of the most serious psychiatric disorders and is characterized by reductions in both brain volume and spine density in the frontal cortex. RhoA belongs to the RAS homolog (Rho) family and plays critical roles in neuronal development and structural plasticity via Rho-kinase. RhoA activity is regulated by GTPase-activating proteins (GAPs) and guanine nucleotide exchange factors (GEFs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!