Until recently, a modest number of approx. 40 lysosomal membrane proteins had been identified and even fewer were characterized in their function. In a proteomic study, using lysosomal membranes from human placenta we identified several candidate lysosomal membrane proteins and proved the lysosomal localization of two of them. In the present study, we demonstrate the lysosomal localization of the mouse orthologue of the human C1orf85 protein, which has been termed kidney-predominant protein NCU-G1 (GenBank accession number: AB027141). NCU-G1 encodes a 404 amino acid protein with a calculated molecular mass of 39 kDa. The bioinformatics analysis of its amino acid sequence suggests it is a type I transmembrane protein containing a single tyrosine-based consensus lysosomal sorting motif at position 400 within the 12-residue C-terminal tail. Its lysosomal localization was confirmed using immunofluorescence with a C-terminally His-tagged NCU-G1 and the lysosomal marker LAMP-1 (lysosome-associated membrane protein-1) as a reference, and by subcellular fractionation of mouse liver after a tyloxapol-induced density shift of the lysosomal fraction using an anti-NCU-G1 antiserum. In transiently transfected HT1080 and HeLa cells, the His-tagged NCU-G1 was detected in two molecular forms with apparent protein sizes of 70 and 80 kDa, and in mouse liver the endogenous wild-type NCU-G1 was detected as a 75 kDa protein. The remarkable difference between the apparent and the calculated molecular masses of NCU-G1 was shown, by digesting the protein with N-glycosidase F, to be due to an extensive glycosylation. The lysosomal localization was impaired by mutational replacement of an alanine residue for the tyrosine residue within the putative sorting motif.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1042/BJ20090567 | DOI Listing |
Alzheimers Dement
December 2024
Denali Therapeutics Inc., South San Francisco, CA, USA.
Background: Macrophages and microglia are myeloid cells that play critical roles in the surveillance of the local environment of the tissues in which they reside. The ability of these phagocytes to perform key functions is contingent on their capacity to sense extracellular cues and mount responses that involve chemotaxis, proliferation, cytokine secretion, and phagocytosis of various cargos for lysosomal clearance. Our overarching hypothesis is that lysosomal degradation of phagocytic cargoes is critical for the resolution of cellular/tissue damage, as well as of inflammation, and that failure to accomplish this step affects myeloid cell states and immune responses.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
NYU Grossman School of Medicine, New York, NY, USA.
Background: Down syndrome (DS) is strongly associated with Alzheimer's disease (AD), attributable to APP overexpression, displaying common features with early-onset AD (EOAD) and late-onset AD (LOAD) like Amyloid-β (Aβ) and tau pathology. Here, we evaluated the Aβ plaques proteome of DS, EOAD and LOAD.
Method: We used unbiased localized proteomics to analyze amyloid plaques and the adjacent plaque-devoid tissue ('AD non-plaque') from post-mortem paraffin-embedded tissues in three subtypes of AD (n = 20/group): DS (59.
J Cell Biol
March 2025
Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China.
Many cancer cells exhibit increased amounts of paucimannose glycans, which are truncated N-glycan structures rarely found in mammals. Paucimannosidic proteins are proposedly generated within lysosomes and exposed on the cell surface through a yet uncertain mechanism. In this study, we revealed that paucimannosidic proteins are produced by lysosomal glycosidases and secreted via lysosomal exocytosis.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Institute of Brain Sciene, National Yang Ming Chiao Tung University, Taipei, Taiwan.
Background: Amyloid-beta (Aβ) deposition is a key pathological characteristic of Alzheimer's disease (AD). Microglia serves as a crucial system responsible for clearing Aβ. Activated microglia migrate towards Aβ deposits, engulf them, and breakdown Aβ through cathepsins within the lysosome.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Vanderbilt University Medical Center, Nashville, TN, USA.
Background: Genome-wide association studies suggest mutations in endolysosomal genes are linked to Alzheimer's disease (AD). Defective lysosomal function has been corroborated as a feature of AD by neuropathological and cell biology studies. PLD3 is a homolog of the phospholipase D family localized to lysosomes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!