Single-molecule imaging of fluorescent proteins expressed in living cells.

Methods Mol Biol

Cellular Informatics Laboratory, 2-1 Hirosawa, 351-0198, RIKEN, Wako, Japan.

Published: November 2009

This chapter focuses on single-molecule imaging (SMI) in living cells using green fluorescent protein (GFP) or its related fluorescent protein tags (GFPs). Use of GFPs is a convenient technique to achieve molecular imaging of most proteins in living cells. However, because of difficulties in preparing samples suitable for SMI and the instability of fluorescence signals, special care is required for SMI using GFPs in living cells. Techniques for vector preparation, protein expression, sample preparation, microscopy, and image processing for SMI of GFPs in living cells are discussed in this chapter, along with examples of imaging applications. Double labeling of single molecules and single-pair fluorescent resonance energy transfer (spFRET) are possible in living cells using GFP and YFP as fluorescent tags. The limitations of SMI using GFPs are also discussed.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-1-59745-483-4_30DOI Listing

Publication Analysis

Top Keywords

living cells
24
smi gfps
12
single-molecule imaging
8
fluorescent protein
8
gfps living
8
living
6
cells
6
fluorescent
5
smi
5
gfps
5

Similar Publications

Translocation across barriers and through constrictions is a mechanism that is often used in vivo for transporting material between compartments. A specific example is apicomplexan parasites invading host cells through the tight junction that acts as a pore, and a similar barrier crossing is involved in drug delivery using lipid vesicles penetrating intact skin. Here, we use triangulated membranes and energy minimization to study the translocation of vesicles through pores with fixed radii.

View Article and Find Full Text PDF

Background: Mycobacterium avium complex (MAC) is a common pathogen causing non-tuberculous mycobacterial infections, primarily affecting the lungs. Disseminated MAC disease occurs mainly in immunocompromised individuals, such as those with acquired immunodeficiency syndrome, hematological malignancies, or those positive for anti-interferon-γ antibodies. However, its occurrence in solid organ transplant recipients is uncommon.

View Article and Find Full Text PDF

Cell-free systems: A synthetic biology tool for rapid prototyping in metabolic engineering.

Biotechnol Adv

January 2025

Division of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Republic of Korea; Department of Chemical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Republic of Korea. Electronic address:

Microbial cell factories provide sustainable alternatives to petroleum-based chemical production using cost-effective substrates. A deep understanding of their metabolism is essential to harness their potential along with continuous efforts to improve productivity and yield. However, the construction and evaluation of numerous genetic variants are time-consuming and labor-intensive.

View Article and Find Full Text PDF

A Cell-penetrating bispecific antibody suppresses hepatitis B virus replication and secretion.

Virus Res

January 2025

Medical Research Center, Yuebei People's Hospital, Shantou University Medical College, 512025, Shaoguan, China; Shenzhen Immuthy Biotech Co., Ltd, 518107, Shenzhen, Guangdong, China. Electronic address:

Hepatitis B virus (HBV) represents one of the major pathogenic factor that leads to chronic liver diseases and the development of hepatocellular carcinoma (HCC). The currently approved anti-HBV drugs cannot eradicate the virus or block the development of HCC. HBV nucleocapsid consists of the hepatitis B core antigen (HBcAg) and the HBV relaxed-circular partially double-stranded DNA (rcDNA), indispensable in virus replication.

View Article and Find Full Text PDF

Dynamic behavior of cell-cell adhesion factors in collective cell migration.

Cells Dev

January 2025

Quantitative and Imaging Biology, International Research Collaboration Center (IRCC), National Institutes of Natural Sciences (NINS), Japan; Trans-Scale Biology Center, National Institute for Basic Biology (NIBB), National Institutes of Natural Sciences (NINS), Japan. Electronic address:

Collective cell migration is a fundamental process underlying various biological phenomena, including embryonic development and cancer cell invasion. The cohesive yet flexible movement of cell collectives largely depends on the coordinated regulation of cell-cell and cell-substrate adhesions. In this review, we summarize the regulation of key cell-cell junction components, such as cadherins and zonula occludens proteins during collective cell migration, with a particular focus on the recently discovered multifaceted roles of ZO-1 in both cell-cell and cell-substrate interactions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!