In a long period grating (LPG) made on a silica-based single material photonic crystal fibre (PCF), the effect of material dispersion on the resonance wavelength of the LPG is negligible. The resonance wavelength, the period and length of the LPG, and the diameter and pitch of the air-hole lattice of the PCF are found to obey a scaling law that is derived from the scaling property of the Maxwell's Equations. Simulations show that the resonance wavelength has a non-monotonic dependence on the grating period and, for a particular grating period, there could exist multiple resonance wavelengths and hence multiple transmission dips due to phase matching between the fundamental core mode and a cladding mode simultaneously at multiple wavelengths.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/opex.12.006252 | DOI Listing |
Proc Natl Acad Sci U S A
February 2025
SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon 16419, Republic of Korea.
The design of organic-peptide hybrids has the potential to combine our vast knowledge of protein design with small molecule engineering to create hybrid structures with complex functions. Here, we describe the computational design of a photoswitchable Ca-binding organic-peptide hybrid. The designed molecule, designated Ca-binding switch (CaBS), combines an EF-hand motif from classical Ca-binding proteins such as calmodulin with a photoswitchable group that can be reversibly isomerized between a spiropyran (SP) and merocyanine (MC) state in response to different wavelengths of light.
View Article and Find Full Text PDFAnal Chem
January 2025
State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, College of Energy, Discipline of Intelligent Instrument and Equipment, Cancer Center and Department of Breast and Thyroid Surgery, Department of Ultrasound, Xiang'an Hospital of Xiamen University, School of Medicine, Laboratory Animal Center Xiamen University, Xiamen University, Xiamen 361005, China.
With the increasing incidence of thyroid cancer worldwide and the increasing demand for surgery, the risk of parathyroid injury is also increasing, which will lead to postoperative hypoparathyroidism (HP) and hypocalcemia. In order to improve the quality of life of patients after surgery, there is an urgent need to develop a novel platform that can identify the parathyroid gland immediately during surgery. The parathyroid gland promotes the increase of blood calcium concentration by secreting parathyroid hormone (PTH).
View Article and Find Full Text PDFAnal Chim Acta
March 2025
Artificial Intelligence Research Center, Chang Gung University, Taoyuan, 333323, Taiwan; Department of Artificial Intelligence, College of Intelligent Computing, Chang Gung University, Taoyuan, 333323, Taiwan. Electronic address:
Background: In recent years, employing deep learning methods in the biosensing area has significantly reduced data analysis time and enhanced data interpretation and prediction accuracy. In some SPR fields, research teams have further enhanced detection capabilities using deep learning techniques. However, the application of deep learning to spectroscopic surface plasmon resonance (SPR) biosensors has not been reported.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
January 2025
Department of Chemistry, College of Science, Rikkyo University, 3-34-1, Nishi-Ikebukuro, Toshima, Tokyo 171-8501, Japan. Electronic address:
A novel aluminum (Al)-based surface plasmon resonance (SPR) sensor operating in the far-ultraviolet (FUV, <200 nm) region has been developed. By utilizing a thinner Al film compared to previously reported deep-ultraviolet (DUV, <300 nm) SPR sensors, the SPR wavelength was effectively maintained within the FUV region across various liquids. In the presence of resonant molecules, the SPR wavelength shift was notably enhanced.
View Article and Find Full Text PDFWave mixing (WM) techniques are crucial for applications such as supercontinuum generation, frequency conversion, and high-dimensional quantum encoding. However, their efficiency is often limited by complex phase-matching requirements, and current insights into phase-matching mechanisms for high-order WM remain limited. To address this, compact optical path configurations with high-peak-power, synchronous, multicolor ultrafast laser sources are needed to enhance high-order wave-mixing efficiency.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!