Combined analysis of EGF+61G>A and TGFB1+869T>C functional polymorphisms in the time to androgen independence and prostate cancer susceptibility.

Pharmacogenomics J

Molecular Oncology Group-CI and Department of Virology, Portuguese Institute of Oncology, Porto Centre, 4200-072 Porto, Portugal.

Published: October 2009

Proliferative mechanisms involving the epidermal growth factor (EGF) and transforming growth factor beta (TGF-beta(1)) ligands are potential alternative pathways for prostate cancer (PC) progression to androgen independence (AI). Thus, the combined effect of EGF and TGFB1 functional polymorphisms might modulate tumor microenvironment and consequently its development. We studied EGF+61G>A and TGFB1+869T>C functional polymorphisms in 234 patients with PC and 243 healthy individuals. Intermediate- and high-proliferation genetic profile carriers have increased risk for PC (odds ratio (OR)=3.76, P=0.007 and OR=3.98, P=0.004, respectively), when compared with low proliferation individuals. Multivariate analysis showed a significantly lower time to AI in the high proliferation group, compared with the low/intermediate proliferation genetic profile carriers (HR=2.67, P=0.039), after adjustment for age, metastasis and stage. Results suggest that combined analysis of target genetic polymorphisms may contribute to the definition of cancer susceptibility and pharmacogenomic profiles. Combined blockage of key molecules in proliferation signaling pathways could be one of the most promising strategies for androgen-independent prostate cancer.

Download full-text PDF

Source
http://dx.doi.org/10.1038/tpj.2009.20DOI Listing

Publication Analysis

Top Keywords

functional polymorphisms
12
prostate cancer
12
combined analysis
8
egf+61g>a tgfb1+869t>c
8
tgfb1+869t>c functional
8
androgen independence
8
cancer susceptibility
8
growth factor
8
genetic profile
8
profile carriers
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!