Members of the aldo-keto reductase (AKR) superfamily, particularly the AKR1C subfamily, are emerging as important mediators of the pathology of cancer. Agents that inhibit these enzymes may provide novel agents for either the chemoprevention or treatment of diverse malignancies. Recently, jasmonates, a family of plant stress hormones that bear a structural resemblance to prostaglandins, have been shown to elicit anticancer activities both in vitro and in vivo. In this study, we show that jasmonic acid (JA) and methyl jasmonate (MeJ) are capable of inhibiting all four human AKR1C isoforms. Although JA is the more potent inhibitor of recombinant AKR1C proteins, including the in vitro prostaglandin F synthase activity of AKR1C3, MeJ displayed greater potency in cellular systems that was, at least in part, due to increased cellular uptake of MeJ. Moreover, using the acute myelogenous leukemia cell lines HL-60 and KG1a, we found that although both jasmonates were able to induce high levels of reactive oxygen species in a dose-dependent fashion, only MeJ was able to induce high levels of mitochondrial superoxide (MSO), possibly as an epiphenomenon of mitochondrial damage. There was a strong correlation observed between MSO formation at 24 hours and reduced cellularity at day 5. In conclusion, we have identified AKR1C isoforms as a novel target of jasmonates in cancer cells and provide further evidence of the promise of these compounds, or derivatives thereof, as adjunctive therapies in the treatment of cancer.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1158/0008-5472.CAN-08-4533 | DOI Listing |
ChemMedChem
November 2024
Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska, 68106, United States.
A series of 7-substituted coumarin derivatives have been characterized as pan-aldo-keto reductase family 1C (AKR1C) inhibitors. The AKR1C family of enzymes are overexpressed in numerous cancers where they are involved in drug resistance development. 7-hydroxy coumarin ethyl esters and their corresponding amides have high potency for AKR1C3 and AKR1C2 inhibition.
View Article and Find Full Text PDFDrug Metab Dispos
December 2023
Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences (K.H., T.F., M.N.) and WPI Nano Life Science Institute (T.F., M.N.), Kanazawa University, Kanazawa, Japan; Department of Pharmacokinetics and Nonclinical Safety, Nippon Boehringer Ingelheim Co., Ltd., Kobe, Japan (H.F., G.M., N.I., W.K.); Department of Gastroenterology and Hepatology, School of Medicine, Sapporo Medical University, Sapporo, Japan (H.N.); Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan (H.M.); Laboratory of Functional Organoid for Drug Discovery, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan (H.M.); Global Center for Medical Engineering and Informatics (H.M.) and Center for Infectious Disease Education and Research (CiDER) (H.M.), Osaka University, Osaka, Japan
Enzymes catalyzing the reduction reaction of xenobiotics are mainly members of the aldo-keto reductase (AKR) and short-chain dehydrogenase/reductase (SDR) superfamilies. The intestine, together with the liver, is responsible for first-pass effects and is an organ that determines the bioavailability of orally administered drugs. In this study, we evaluated the mRNA and protein expression levels of 12 AKR isoforms (AKR1A1, AKR1B1, AKR1B10, AKR1B15, AKR1C1, AKR1C2, AKR1C3, AKR1C4, AKR1D1, AKR1E2, AKR7A2, and AKR7A3) and 7 SDR isoforms (CBR1, CBR3, CBR4, DCXR, DHRS4, HSD11B1, and HSD17B12) in each region of the human intestine using next-generation sequencing and data-independent acquisition proteomics.
View Article and Find Full Text PDFChem Biol Interact
November 2023
Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China. Electronic address:
In vivo and in vitro studies have confirmed that liquiritigenin (LQ), the primary active component of licorice, acts as an antitumor agent. However, how LQ diminishes or inhibits tumor growth is not fully understood. Here, we report the enzymatic inhibition of LQ and six other flavanone analogues towards AKR1Cs (AKR1C1, AKR1C2 and AKR1C3), which are involved in prostate cancer, breast cancer, and resistance of anticancer drugs.
View Article and Find Full Text PDFMol Inform
October 2022
Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 2, 21000, Novi Sad, Serbia.
Human aldo-keto reductase 1C isoforms (AKR1C1-C4) catalyze reduction of endogenous and exogenous compounds, including therapeutic drugs, and are associated with chemotherapy resistance. AKR1C2 is involved in metastatic processes and is a target for the treatment of various cancers. Here we used molecular docking to explore the potential of a series of eleven bile acid methyl esters as AKR1C2 inhibitors.
View Article and Find Full Text PDFPharmacol Rev
July 2021
Center of Excellence in Environmental Toxicology, Department of Systems Pharmacology & Translational Therapeutics, Philadelphia, Pennsylvania (T.M.P.); Department of Pharmaceutical Science (S.J., P.C.T.) and Fred and Pamela Buffett Cancer Center (P.C.T.), University of Nebraska Medical Center and UNMC Center for Drug Discovery, Omaha, Nebraska; and Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia (T.L.R.).
Human aldo-keto reductases (AKRs) catalyze the NADPH-dependent reduction of carbonyl groups to alcohols for conjugation reactions to proceed. They are implicated in resistance to cancer chemotherapeutic agents either because they are directly involved in their metabolism or help eradicate the cellular stress created by these agents (e.g.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!