IGF-I and GH: potential use in gene doping.

Growth Horm IGF Res

Division of Applied Biomedical Research, School of Biomedical and Health Sciences, Shepherd's House, Guy's Campus, King's College London, London SE1 1UL, United Kingdom.

Published: August 2009

Gene doping is the term given to the potential misuse of gene therapy for the purposes of enhancing athletic performance. Insulin like growth factor-I (IGF-I), the prime target of growth hormone action, is one candidate gene for improving performance. In recent years a number of transgenic and somatic gene transfer studies on animals have shown that upregulation of IGF-I stimulates muscle growth and improves function. This increase in muscle IGF-I is not reflected in measurable increases in circulating IGF-I. Whilst the responses obtained in the animal studies would appear to give clear benefits for performance, the transfer of such techniques to humans still presents many technical challenges. Further challenges will also be faced by the anti doping authorities in detecting the endogenously produced products of enhanced gene expression.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ghir.2009.04.016DOI Listing

Publication Analysis

Top Keywords

gene doping
8
gene
6
igf-i
5
igf-i potential
4
potential gene
4
doping gene
4
doping term
4
term potential
4
potential misuse
4
misuse gene
4

Similar Publications

Glutathione-Responsive Metal-Organic-Framework-Derived MnO/(A/R)TiO Nanoparticles for Enhanced Synergistic Sonodynamic/Chemodynamic/Immunotherapy.

ACS Nano

January 2025

State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China.

Despite the potential of sonodynamic therapy (SDT) in treating malignant tumors, the lack of effective sonosensitizers has limited its clinical implementation. In this study, we explored the relationship between the heteroatom doping concentration in metal-organic frameworks and interface formation after pyrolysis by regulating the addition of manganese sources and successfully derived Z-scheme heterojunctions MnO/(A/R)TiO (MTO) in situ from MIL-125-NH (Ti/Mn). The electron transfer pathway introduced by interfacial contact promoted carrier separation and greatly preserved the effective redox components, significantly influencing the performance of reactive oxygen species generation.

View Article and Find Full Text PDF

Fe-based nanostructured particles affect the biocontrol activity of Trichoderma species by inducing their effector-like and mycoparasitism-associated genes.

Chemosphere

December 2024

Centro de Investigación en Materiales Avanzados (CIMAV), Miguel de Cervantes 120, Complejo Industrial Chihuahua, Chih., C.P. 31136, México. Electronic address:

The use of biocontrol microorganisms is one of the primary techniques used in agriculture to combat the damage caused by phytopathogens. Of these, Trichoderma sp. stand out as fungi species that are naturally present in agricultural soil and can come into contact with various compounds, such as nanostructured particles (NPs), which are starting to be used as pesticides and fertilizers.

View Article and Find Full Text PDF

Annual Banned-Substance Review 17th Edition-Analytical Approaches in Human Sports Drug Testing 2023/2024.

Drug Test Anal

December 2024

Center for Preventive Doping Research, Institute of Biochemistry, German Sport University Cologne, Cologne, Germany.

The 17th edition of the annual banned-substance review on analytical approaches in human sports drug testing is dedicated to literature published between October 2023 and September 2024. As in previous years, focus is put particularly on new or enhanced analytical options in human doping controls as well as investigations into the metabolism and elimination of compounds of interest, which represent central (while not exclusive) cornerstones of the global anti-doping mission. New information published within the past 12 months on established doping agents as well as new potentially relevant substances are reviewed and discussed in the context of the World Anti-Doping Agency's 2024 Prohibited List.

View Article and Find Full Text PDF

[Simultaneous Removal of Antibiotic-resistant Bacteria, Genes, and Inhibition of Horizontal Transfer using Vis-rGO-CNCF-enhanced Peroxymonosulfate Activation Process].

Huan Jing Ke Xue

January 2025

State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200082, China.

As emerging contaminants, antibiotic-resistant bacteria (ARBs) and antibiotic-resistant genes (ARGs) pose a serious threat to human health and ecological security. Here, a reduced graphene oxide and g-CN co-doped copper ferrite (rGO-CNCF) were synthesized. The composite material was characterized using XRD, FTIR, XPS, SEM-EDS, TEM, and DRS analysis methods, and a visible-light-assisted rGO-CNCF-activated PMS system was constructed for the removal of ARB and ARGs in water.

View Article and Find Full Text PDF

The detection of endogenous anabolic androgenic steroids misuse in Asian population using the Steroidal Module of the Athlete Biological Passport (ABP) is a challenge due to the high prevalence of UGT2B17 gene deletion polymorphism with low levels of testosterone (T) glucuronide. In this study, the capabilities of different approaches based on urine analysis for the detection of oral T undecanoate administration were evaluated in 13 Asian volunteers, including 11 subjects with del/del genotype and 2 subjects with del/ins genotype. In the first part of the work, the effect on the urinary steroid profile (SP) and on the isotope ratio mass spectrometry markers was evaluated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!