Age is an important risk factor for the development of metabolic diseases (e.g. obesity, diabetes and atherosclerosis). Yet, little is known about the molecular mechanisms occurring upon aging that affect energy metabolism. Although visceral white adipose tissue (vWAT) is known for its key impact on metabolism, recent studies have indicated it could also be a key regulator of lifespan, suggesting that it can serve as a node for age-associated fat accretion. Here we show that aging triggers changes in the transcriptional milieu of the nuclear receptor peroxisome proliferator-activated receptor gamma (PPARgamma) in vWAT, which leads to a modified potential for transactivation of target genes upon ligand treatment. We found that in vWAT of mice, rats and men, aging induced a specific decrease in the expression of steroid receptor coactivator-1 (SRC-1), whose recruitment to PPARgamma is associated with improved insulin sensitivity and low adipogenic activity. In contrast, aging and oxidative stress did not impact on PPARgamma expression and PPARgamma ligand production. Age-induced loss of PPARgamma/SRC-1 interactions increased the binding of PPARgamma to the promoter of the adipogenic gene aP2. These findings suggest that strategies aimed at increasing SRC-1 expression and recruitment to PPARgamma upon aging might help improve age-associated metabolic disorders.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1474-9726.2009.00490.xDOI Listing

Publication Analysis

Top Keywords

adipose tissue
8
steroid receptor
8
receptor coactivator-1
8
recruitment ppargamma
8
ppargamma
7
aging
6
aging alters
4
alters ppargamma
4
ppargamma rodent
4
rodent human
4

Similar Publications

Semaglutide restores astrocyte-vascular interactions and blood-brain barrier integrity in a model of diet-induced metabolic syndrome.

Diabetol Metab Syndr

January 2025

Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation-Fiocruz, Campus Maré. Centro de Pesquisa, Inovação e Vigilância em Covid-19 e Emergências Sanitárias. Endereço: Av. Brasil, 4036-Bloco 2. Manguinhos, Rio de Janeiro, RJ, CEP 21040-361, Brazil.

Introduction: Metabolic syndrome (MetS) is a metabolic disorder related to obesity and insulin resistance and is the primary determinant of the development of low-intensity chronic inflammation. This continuous inflammatory response culminates in neuroimmune-endocrine dysregulation responsible for the metabolic abnormalities and morbidities observed in individuals with MetS. Events such as the accumulation of visceral adipose tissue, increased plasma concentrations of free fatty acids, tissue hypoxia, and sympathetic hyperactivity in individuals with MetS may contribute to the activation of the innate immune response, which compromises cerebral microcirculation and the neurovascular unit, leading to the onset or progression of neurodegenerative diseases.

View Article and Find Full Text PDF

Weight cycling exacerbates glucose intolerance and hepatic triglyceride storage in mice with a history of chronic high fat diet exposure.

J Transl Med

January 2025

Research Unit NeuroBiology of Diabetes, Helmholtz Munich, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany.

Background: Obese subjects undergoing weight loss often fear the Yoyo dieting effect, which involves regaining or even surpassing their initial weight. To date, our understanding of such long-term obesity and weight cycling effects is still limited and often based on only short-term murine weight gain and loss studies. This study aimed to investigate the long-term impacts of weight cycling on glycemic control and metabolic health, focusing on adipose tissue, liver, and hypothalamus.

View Article and Find Full Text PDF

Wu-Mei-Wan enhances brown adipose tissue function and white adipose browning in obese mice via upregulation of HSF1.

Chin Med

January 2025

Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.

Background: This research aims to explore the anti-obesity potential of Wu-Mei-Wan (WMW), particularly its effects on adipose tissue regulation in obese mice induced by a high-fat diet (HFD). The study focuses on understanding the role of heat shock factor 1 (HSF1) in mediating these effects.

Methods: HFD-induced obese mice were treated with WMW.

View Article and Find Full Text PDF

Background: Obesity and metabolic syndrome are major public health concerns linked to cognitive decline with aging. Prior work from our lab has demonstrated that short-term high fat diet (HFD) rapidly impairs memory function via a neuroinflammatory mechanism. However, the degree to which these rapid inflammatory changes are unique to the brain is unknown.

View Article and Find Full Text PDF

The effects of the gut bacterial product, gassericin A, on obesity in mice.

Lipids Health Dis

January 2025

Department of Basic Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran.

Background: Obesity can arise from various physiological disorders. This research examined the impacts of the bacteriocin, gassericin A, which is generated by certain gut bacteria, using an in vivo model of obesity.

Methods: Fifty Swiss NIH mice were randomly assigned to five different groups.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!