The neo-angiogenesis process is crucial for solid tumor growth and invasion, as the vasculature provides metabolic support and access to the circulation. Tumor blood vessels differ from normal vessels by altered morphology, blood flow and permeability, and the "switch" of endothelial cells to an angiogenic phenotype is considered a hallmark of the malignant process. Recent evidence indicates that tumor-derived endothelial cells (TEC) possess a distinct and unique phenotype differing from normal endothelial cells at the molecular and functional levels. The anti-angiogenic therapies developed to date are based on tumor endothelial cells being genetically normal. However, it has recently been shown that TEC derived from different tumors are genetically unstable and may acquire resistance to drugs. It has been suggested that TEC may acquire cytogenetic abnormalities within the tumor microenvironment. We found that TEC from different tumors share characteristics in terms of pro-angiogenic properties, survival and resistance to chemotherapy in respect to non-tumor endothelial cells and maintain in vitro an immature pro-angiogenic phenotype in the absence of tumor cells. This was associated with an up-regulation of the AKT/PI3K pathway, involved in the repression of the anti-angiogenic factors thrombospondin-1 and PTEN, and the presence in TEC of the embryonic transcription factor PAX2, responsible for the expression of immature endothelial markers such as NCAM. The in vivo inhibitions of these pathways were shown to display an anti-angiogenic effect on TEC. This review considers the current studies on TEC abnormalities and discusses the hypothesis that at least part of tumor vessels may derive from an intra tumor ongoing embryonic-like vasculogenesis or from tissue endothelial cells switched to angiogenesis from genetic information transmitted from the tumor.

Download full-text PDF

Source
http://dx.doi.org/10.2174/157016110790887036DOI Listing

Publication Analysis

Top Keywords

endothelial cells
28
tumor
9
molecular functional
8
endothelial
8
tumor endothelial
8
cells
8
tec
7
characterization molecular
4
functional alterations
4
alterations tumor
4

Similar Publications

Background: Postmenopausal women (PMW) who complete menopause at a late age (55+ years) have lower cardiovascular disease risk than PMW who complete menopause at a normal age (45-54 years). However, the influence of late-onset menopause on vascular endothelial dysfunction is unknown. Moreover, the mechanisms by which a later age at menopause may modulate endothelial function remain to be determined.

View Article and Find Full Text PDF

Implication of fibroblast growth factor 7 in ovarian cancer metastases and patient survival.

Front Oncol

January 2025

Gynecologic Oncology Section, Stephenson Cancer Center, Obstetrics and Gynecology Department, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States.

Background/objectives: Patients with ovarian cancer commonly experience metastases and recurrences, which contribute to high mortality. Our objective was to better understand ovarian cancer metastasis and identify candidate biomarkers and drug targets for predicting and preventing ovarian cancer recurrence.

Methods: Transcripts of 770 cancer-associated genes were compared in cells collected from ascitic fluid versus resected tumors of an ES-2 orthotopic ovarian cancer mouse model.

View Article and Find Full Text PDF

CO-loaded hemoglobin/EGCG nanoparticles functional coatings for inflammation modulation of vascular implants.

Regen Biomater

December 2024

Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan 610031, China.

During the implantation process of cardiovascular implants, vascular damage caused by inflammation occurs, and the inflammatory process is accompanied by oxidative stress. Currently, carbon monoxide (CO) has been demonstrated to exhibit various biological effects including vasodilatation, antithrombotic, anti-inflammatory, apoptosis-inducing and antiproliferative properties. In this study, hemoglobin/epigallocatechin-3-gallate (EGCG) core-shell nanoparticle-containing coating on stainless steel was prepared for CO loading and inflammation modulation.

View Article and Find Full Text PDF

The glycocalyx is a layer of villus-like structure covering the luminal surface of vascular endothelial cells. Damage to the glycocalyx has been proven linked to the development of many diseases. However, the factors that promote damage to the glycocalyx are not fully elaborated.

View Article and Find Full Text PDF

Advanced in vitro models are crucial for studying human airway biology. Our objective was the development and optimization of 3D in vitro models representing diverse airway regions, including deep lung alveolar region. This initiative was aimed at assessing the influence of selective scaffold materials on distinct airway co-culture models.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!