Previous studies show discrepancies concerning the effects of pretraining on spatial learning deficits induced by blockade of the N-methyl-D-aspartate (NMDA) receptor. These inconsistencies might be attributed to the differences in the nature of the pretraining tasks and the method of blocking NMDA receptors. In the present study, the authors pretrained rats in a spatial water maze task. The authors then trained them with a novel spatial task in a novel environment under chronic blockade of hippocampal NMDA receptors by intrahippocampal infusion of 2-amino-5-phosphonopentanoic acid (AP5) using osmotic pumps. Although the rats had acquired the basic techniques needed to solve a water-maze spatial task during pretraining, those given high or low doses of AP5 showed acquisition deficits. As the spatial pretraining failed to ameliorate the acquisition deficits of a new task in a novel environment, it was suggested that NMDA receptors were necessary in forming spatial representations. Because neither dose of AP5 affected the performance of a spatial task in the retention phase, sensory motor disturbances could not have caused these deficits.

Download full-text PDF

Source
http://dx.doi.org/10.1037/a0015672DOI Listing

Publication Analysis

Top Keywords

nmda receptors
12
spatial task
12
spatial
8
spatial learning
8
learning deficits
8
deficits induced
8
intrahippocampal infusion
8
task novel
8
novel environment
8
acquisition deficits
8

Similar Publications

The autoantibodies against the NR1 subunit are well known in the pathomechanism of NMDAR encephalitis. The dysfunction of the NR2 subunit could be a critical factor in this neurological disorder due to its important role in the postsynaptic pathways that direct synaptic plasticity. We report a case of paraneoplastic anti-NMDAR encephalitis presented alongside very severe illness.

View Article and Find Full Text PDF

Background: N-methyl-D-aspartate type glutamate receptors (NMDARs) are fundamental to neuronal physiology and pathophysiology. The prefrontal cortex (PFC), a key region for cognitive function, is heavily implicated in neuropsychiatric disorders, positioning the modulation of its glutamatergic neurotransmission as a promising therapeutic target. Our recently published findings indicate that AT receptor activation enhances NMDAR activity in layer V pyramidal neurons of the rat PFC.

View Article and Find Full Text PDF

Assembly and architecture of endogenous NMDA receptors in adult cerebral cortex and hippocampus.

Cell

January 2025

University of Chinese Academy of Sciences, Beijing, China; Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China. Electronic address:

The cerebral cortex and hippocampus are crucial brain regions for learning and memory, which depend on activity-induced synaptic plasticity involving N-methyl-ᴅ-aspartate receptors (NMDARs). However, subunit assembly and molecular architecture of endogenous NMDARs (eNMDARs) in the brain remain elusive. Using conformation- and subunit-dependent antibodies, we purified eNMDARs from adult rat cerebral cortex and hippocampus.

View Article and Find Full Text PDF

Memory is a dynamic process of encoding, storing, and retrieving information. It includes sensory, short-term, and long-term memory, each with unique characteristics. Nitric oxide (NO) is a biological messenger synthesized on demand by neuronal nitric oxide synthase (nNOS) through a biochemical process initiated by glutamate binding to NMDA receptors, causing membrane depolarization and calcium influx.

View Article and Find Full Text PDF

Objectives: Traumatic brain injury (TBI) is a significant cause of mortality and disability worldwide. TBI has been associated with factors such as oxidative stress, neuroinflammation, and apoptosis, which are believed to be mediated by the N-methyl-D-aspartate (NMDA)-type glutamate receptor. Two NMDA receptor antagonists, ketamine and memantine, have shown potential in mitigating the pathophysiological effects of TBI.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!