Highly quasi-monodisperse ag nanoparticles on titania nanotubes by impregnative aqueous ion exchange.

Langmuir

Molecular Engineering Program, Instituto Mexicano del Petroleo, Eje Central Lazaro Cardenas 152, 07730 Mexico, D.F., Mexico.

Published: September 2009

Silver nanoparticles were homogenously dispersed on titania nanotubes (NT), which were prepared by alkali hydrothermal methodology and dried at 373 K. Ag(+) incorporation was done by impregnative ion exchange of aqueous silver nitrate onto NT. First, Ag(+) ions incorporate into the layers of nanotube walls, and then, upon heat treatment under N(2) at 573 and 673 K, they migrate and change into Ag(2)O and Ag(0) nanoparticles, respectively. In both cases, Ag nanoparticles are highly dispersed, decorating the nanotubes in a polka-dot pattern. The Ag particle size distribution is very narrow, being ca. 4 +/- 2 nm without any observable agglomeration. The reduction of Ag(2)O into Ag(0) octahedral nanoparticles occurs spontaneously and topotactically when annealing, without the aid of any reducing agent. The population of Ag(0) nanoparticles can be controlled by adjusting the annealing temperature. An electron charge transfer from NT support to Ag(0) nanoparticles, because of a strong interaction, is responsible for considerable visible light absorption in Ag(0) nanoparticles supported on NT.

Download full-text PDF

Source
http://dx.doi.org/10.1021/la9009702DOI Listing

Publication Analysis

Top Keywords

ag0 nanoparticles
16
nanoparticles
8
titania nanotubes
8
ion exchange
8
ag2o ag0
8
ag0
5
highly quasi-monodisperse
4
quasi-monodisperse nanoparticles
4
nanoparticles titania
4
nanotubes impregnative
4

Similar Publications

Nebulized Hybrid Nanoarchaeosomes: Anti-Inflammatory Activity, Anti-Microbial Activity and Cytotoxicity on A549 Cells.

Int J Mol Sci

January 2025

Centro de Investigación y Desarrollo de Nanomedicinas (CIDeN), Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Roque Sáenz Peña 352, B1876 Bernal, Argentina.

The properties of two hybrid nanoarchaeosomes (hybrid nanoARCs) made of archaeolipids extracted from the halophilic archaea and combining the properties of archaeolipid bilayers with metallic nanoparticles are explored here. BS-nanoARC, consisting of a nanoARC loaded with yerba mate ( extract (YME)-biogenic silver nanoparticles (BSs), and [BS + BS-nanoARC], consistent of a BS-nanoARC core covered by an outer shell of BSs, were structurally characterized and their therapeutic activities screened. By employing 109 ± 5 µg gallic acid equivalents (GAEs) and 73.

View Article and Find Full Text PDF

Cytosine-rich and poly(adenine)-tailed tetrahedral DNA framework (TDF) is designed as template (A-TDF) for anchoring silver nanoclusters (AgNCs) and igniting the dual-color fluorescence of AgNCs. The resultant DNA-AgNCs simultaneously emits red and green fluorescence, and the quantum yield of red fluorescence is as high as 44.8%.

View Article and Find Full Text PDF

Pectin-based silver nanoparticles (AgNPs) have been used in the field of antibacterials for food due to their excellent antibacterial properties. Herein, in order to achieve higher antibacterial performance, AgNPs were synthesized using high-methoxyl pectin (HMP) and amidated low-methoxyl pectin (ALMP) as precursors. Initially, ALMP-1, -2, and -4 were obtained by pectin amidation with increasing concentrations of NHOH.

View Article and Find Full Text PDF

InPrO microtubes are derived from MIL-68, and then Ag nanoparticles are anchored to synthesize Ag/InPrO microtubes. All results indicate that Pr-doping and Ag-loading greatly affect the gas-sensing performance of InO sensor, which InPrO and Ag/InO sensors both exhibit the response value exceeding 900. While Ag/InPrO sensor exhibits the highest response value of 2438.

View Article and Find Full Text PDF

The deployment of magnetically responsive and polymeric materials to remove dyes that are hazardous in aquatic environments has profoundly revolutionized environmental sustainability. This study focuses on removing the hazardous cationic Malachite Green (MG) dye from solutions, employing a novel magnetic composite film as an adsorbent, designated as AgCo FeO (ACFCeP). The composite was synthesized solvent casting, incorporating AgCo FeO nanoparticles and CeO into a cellulose acetate/polyvinylpyrrolidone (CA/PVP) polymer matrix.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!