Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
We describe the formation of lateral 2D-3D patterns in mixed multilayer LB films of stearic acid (SA) and octadecylamine (ODA) deposited from aqueous subphases at a basic pH. The 3D particles of SA constituting the micrometer-scale linear assemblies in the LB film are assumed to segregate at the three-phase contact line in the course of film deposition. This 2D-3D phase separation of the two-component system presumably originates from the substrate-induced lowering of the collapse point of SA that leads to spontaneous 3D condensation of an acid on a solid support. The morphology of SA/ODA LB patterns is sensitively influenced by the deposition speed and surface pressure, while the chemistry of the solid support does not affect the resulting structures. The possible mechanism that controls the specific orthogonal arrangement of the 3D phase of SA in the LB film through wettability oscillations is suggested.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jp806317c | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!