Conventional chemical profiling of methylamphetamine has been used for many years to determine the synthetic route employed and where possible to identify the precursor chemicals used. In this study stable isotope ratio analysis was investigated as a means of determining the origin of the methylamphetamine precursors, ephedrine and pseudoephedrine. Ephedrine and pseudoephedrine may be prepared industrially by several routes. Results are presented for the stable isotope ratios of carbon (delta(13)C), nitrogen (delta(15)N) and hydrogen (delta(2)H) measured in methylamphetamine samples synthesized from ephedrine and pseudoephedrine of known provenance. It is clear from the results that measurement of the delta(13)C, delta(15)N and delta(2)H stable isotope ratios by elemental analyzer/thermal conversion isotope ratio mass spectrometry (EA/TC-IRMS) in high-purity methylamphetamine samples will allow determination of the synthetic source of the ephedrine or pseudoephedrine precursor as being either of a natural, semi-synthetic, or fully synthetic origin.

Download full-text PDF

Source
http://dx.doi.org/10.1002/rcm.4109DOI Listing

Publication Analysis

Top Keywords

ephedrine pseudoephedrine
20
isotope ratio
12
stable isotope
12
delta13c delta15n
8
delta15n delta2h
8
ratio mass
8
mass spectrometry
8
isotope ratios
8
methylamphetamine samples
8
isotope
5

Similar Publications

Qingwen Zhike prescription (QWZK), a traditional Chinese medicine (TCM) hospital prescription developed in response to the corona virus disease 2019 (COVID-19) pandemic, has demonstrated efficacy in clinical practice. Nevertheless, its specific antiviral components and mechanisms of action remain unclear. This study screened the antiviral compounds against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) from Qingwen Zhike prescription and explored the underlying mechanism through chemical composition analysis, serum and lung exposure profiles analysis, high-throughput screening, and transmission electron microscopy (TEM) observation.

View Article and Find Full Text PDF

Late pleistocene exploitation of Ephedra in a funerary context in Morocco.

Sci Rep

November 2024

Research Group Tarha, Department of Historical Sciences, University of Las Palmas de Gran Canaria, Pérez del Toro 1, Las Palmas, 35003, Spain.

The active compounds found in many plants have been widely used in traditional medicine and ritual activities. However, archaeological evidence for the use of such plants, especially in the Palaeolithic period, is limited due to the poor preservation and fragility of seed, fruit, and other botanical macro-remains. In this study, we investigate the presence and possible uses of Ephedra during the Late Pleistocene based on the analysis of exceptionally preserved plant macrofossils recovered from c.

View Article and Find Full Text PDF

Quadrupolar NMR crystallography guided crystal structure prediction (QNMRX-CSP) is a nascent protocol for predicting, solving, and refining crystal structures. QNMRX-CSP employs a combination of solid-state NMR data from quadrupolar nuclides (, nuclear spin >1/2), static lattice energies and electric field gradient (EFG) tensors from dispersion-corrected density functional theory (DFT-D2*) calculations, and powder X-ray diffraction (PXRD) data; however, it has so far been applied only to organic HCl salts with small and rigid organic components, using Cl EFG tensor data for both structural refinement and validation. Herein, QNMRX-CSP is extended to ephedrine HCl (Eph) and pseudoephedrine HCl (Pse), which are diastereomeric compounds that feature distinct space groups and organic components that are larger and more flexible.

View Article and Find Full Text PDF

Intellectual drug doping in athletics by using stimulants that affect central nervous system functions has been diversified. Stimulants are regulated by the World Anti-Doping Agency according to their levels of urinary concentration. Positron emission tomography could evaluate how stimulants affect central nervous system functions.

View Article and Find Full Text PDF

Model compounds for evaluating the reactivity of amphetamine-type stimulants.

Forensic Sci Int

July 2024

Deakin University, Centre for Sustainable Bioproducts, School of Life and Environmental Sciences, Waurn Ponds, Australia. Electronic address:

The use of controlled precursors for reaction optimisation is not always practical. One approach to limiting the use of controlled substances is to instead use 'model compounds'. Herein, two model compounds resembling norephedrine and ephedrine were selected based on their (i) structural similarity (i.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!