NIR fluorescent ytterbium compound for in vivo fluorescence molecular imaging.

Luminescence

Department of Patho-Functional Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, Japan.

Published: June 2010

We have developed a new NIR fluorescent probe based on an ytterbium(III) (E)-1-(pyridin-2-yl-diazenyl)naphthalen-2-ol (PAN) complex. This probe emits near-infrared luminescence derived from the Yb ion through excitation of the PAN moiety with visible light (lambda(ex)= 530 nm, lambda(em)= 975 nm). The results support the possible utility of the probe for in vivo fluorescence molecular imaging.

Download full-text PDF

Source
http://dx.doi.org/10.1002/bio.1136DOI Listing

Publication Analysis

Top Keywords

nir fluorescent
8
vivo fluorescence
8
fluorescence molecular
8
molecular imaging
8
fluorescent ytterbium
4
ytterbium compound
4
compound vivo
4
imaging developed
4
developed nir
4
fluorescent probe
4

Similar Publications

NanoTrackThera Platform for Real-Time, In Situ Monitoring of Tumor Immunotherapy and Photothermal Synergistic Efficacy.

Small

January 2025

College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan, 250014, P. R. China.

Cancer is one of the leading causes of death worldwide, posing a significant threat to human health. Although immunotherapy has shown promise in cancer treatment, its efficacy is often compromised by tumor immune evasion, which hinders treatment outcomes. Therefore, combining immunotherapy with other therapeutic approaches to enhance its effectiveness has become an increasingly accepted strategy in clinical practice.

View Article and Find Full Text PDF

Dimerizing DNA-AgNCs a C-Ag-C structure for fluorescence sensing with dual-output signals.

Chem Commun (Camb)

January 2025

Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha, 410082, People's Republic of China.

The unique insertion capability of Ag into cytosine-cytosine (C-Ag-C) mismatch-base pairs enables precise fabrication of DNA-trapped silver nanoclusters (DNA-AgNCs) through varying the DNA sequences, thereby offering precise assembly of DNA-AgNCs and demonstrating great fluorescence applications. However, most of the DNA-AgNC-based fluorescence sensors have a single output signal. Herein, we developed a dimerized DNA-AgNC system through C-Ag-C connection at the 3'-end of a designed DNA.

View Article and Find Full Text PDF

The large recruitment of tumor-associated macrophages and low exposure of tumor-associated antigens in tumor microenvironment have severely suppress the efficacy of anti-tumor immunotherapy. Herein, biosynthesized magnetosome (Mag) from bacteria was loaded with photothermal/photodynamic agent/near infrared (NIR) fluorescence dye (IR780) and further modified with lipid-PEG-c(RGDyK) through biomembrane, forming Mag for fluorescence imaging, magnetic resonance imaging, immunotherapy and photodynamic/photothermal therapy. After intravenous injection into B16F10 tumor-bearing mice, Mag could efficiently accumulate in tumor tissues based on near infrared (NIR) fluorescence and magnetic resonance dual-modality imaging, and repolarize tumor-associated macrophages (TAMs) from M2 phenotype to M1 phenotype, significantly improving the effect of tumor immunotherapy.

View Article and Find Full Text PDF

A Spiro-Based NIR-II Photosensitizer with Efficient ROS Generation and Thermal Conversion Performances for Imaging-Guided Tumor Theranostics.

Adv Healthc Mater

January 2025

Center for Molecular Systems and Organic Devices (CMSOD), Key Laboratory for Organic Electronics & Information Displays (KLOEID) and Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications (NJUPT), Nanjing, 210023, China.

Organic photosensitizers (PSs) possessing NIR-II emission and photodynamic/photothermal effect have received a great sense of attention for their cutting-edge applications in imaging-guided multimodal phototherapy. However, it is highly challenging to design efficient PSs with high luminescence and phototherapy performance simultaneously. In this study, a spiro-functionalization strategy is proposed to alleviate aggregate-caused quenching of PSs and promote photodynamic therapy, and the strategy is verified via a spiro[fluorine-9,9'-xanthene]-modified NIR-II PS (named SFX-IC) with an acceptor-donor-acceptor configuration.

View Article and Find Full Text PDF

Fabrication of a Redox-Reversible Near-Infrared Fluorogenic Probe for Ferroptosis Process Monitoring and the Early Diagnosis of Diabetes.

Anal Chem

January 2025

Key Laboratory of Emergency and Trauma of Ministry of Education, Department of Radiotherapy, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 571199, China.

Ferroptosis is a type of cell death triggered by the iron-dependent accumulation of lipid peroxides in cells. Diabetes, a chronic metabolic disorder characterized by hyperglycemia, can lead to various health complications. The process of ferroptosis and the progression of diabetes are closely linked to redox homeostasis, which is regulated by the levels of reactive oxygen and sulfur species.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!