Objective: The MB fraction of creatine kinase (CK-MB) has long been used as a cardiac marker. It is known that the CK-MB immunoinhibition method lacks selectivity and accuracy, because the appearance of macro CK type 2, corresponding to mitochondrial creatine kinase (MtCK) in some patient serum may render CK-MB activity measured by conventional method abnormally high. Thus, to improve the specificity and accuracy of the CK-MB assay, we developed two types of monoclonal anti-MtCK antibodies against sarcomeric MtCK and ubiquitous MtCK, and present herein the performance of a new method using these antibodies.

Material And Methods: The performance of our test for detecting CK-MB activity was compared with other methods, and the range of CK-MB activities in normal human serum was investigated.

Results: The two types of monoclonal antibodies developed by us were isoenzyme-specific to sMtCK or uMtCK. The correlation coefficients of our method and conventional method to electrophoresis were 0.973 and 0.873, respectively. The mean CK-MB activity in normal human serum by our method and the conventional method was 2.4 and 11.7 U/L, respectively. Thus, our data indicated that about 80% of CK-MB activity, determined using the conventional method, seems to correspond to the MtCK activity.

Conclusion: Our method is novel in offering higher accuracy of measuring true CK-MB contents in human serum as compared to the conventional method. The possibility of accurately estimating CK-MB activity by our method which can inhibit MtCKs in healthy person and patient serum is likely to bring a break-through in clinical diagnostics.

Download full-text PDF

Source
http://dx.doi.org/10.3109/00365510902981171DOI Listing

Publication Analysis

Top Keywords

ck-mb activity
20
conventional method
20
creatine kinase
16
human serum
12
method
11
ck-mb
10
monoclonal antibodies
8
patient serum
8
types monoclonal
8
normal human
8

Similar Publications

Study on the Synergistic Effect of Klotho and KRAS on Reducing Ferroptosis After Myocardial Infarction by Regulating RAP1/ERK Signaling Pathway.

Appl Biochem Biotechnol

January 2025

Department of Internal Medicine-Cardiovascular, Guangzhou Twelfth People's Hospital, No.1, Tianqiang Road, Tianhe District, Guangzhou City, Guangdong Province, 510620, China.

Myocardial infarction (MI) is a coronary artery-related disease that seriously threatens human life and is the leading cause of sudden death worldwide, where a lack of nutrients and oxygen leads to an inflammatory response and death of cardiomyocytes. Ferroptosis is a form of non-apoptotic cell death associated with metabolic dysfunction, resulting in abnormal breakdown of glutamine and iron-dependent accumulation of reactive oxygen species (ROS) during metabolism. However, the molecular mechanism of ferroptosis in the pathogenesis of MI and the function of Klotho and KRAS on ferroptosis during MI remain unclear.

View Article and Find Full Text PDF

Titin fragment is a sensitive biomarker in Duchenne muscular dystrophy model mice carrying full-length human dystrophin gene on human artificial chromosome.

Sci Rep

January 2025

Department of Chromosome Biomedical Engineering, School of Life Science, Faculty of Medicine, Tottori University, 86 Nishi-cho, Yonago, Tottori, 683‑8503, Japan.

Duchenne muscular dystrophy (DMD) is an X-linked recessive disorder caused by mutations of the dystrophin gene, which spans 2.4 Mb on the X chromosome. Creatine kinase (CK) activity in blood and titin fragment levels in urine have been identified as biomarkers in DMD to monitor disease progression and evaluate therapeutic intervention.

View Article and Find Full Text PDF

Doxorubicin-induced cardiotoxicity (DIC) is one of the most severe side effects of doxorubicin, yet the underlying mechanisms remain incompletely understood. Our results showed that Neutrophil extracellular traps (NETs) accumulated in plasma and cardiac tissue after doxorubicin treatment. The inhibition of NETs formation by Pad4 gene ablation significantly attenuated doxorubicin-induced arrhythmia, prolonged survival time and reduced the levels of Troponin T (cTnT) and creatine kinase MB (CK-MB) in mice.

View Article and Find Full Text PDF

Cardioprotective potential of tectochrysin against vanadium induced heart damage via regulating NLRP3, JAK1/STAT3 and NF-κB pathway.

J Trace Elem Med Biol

January 2025

Department of Pathology, College of Medicine, King Khalid University, Asir 61421, Saudi Arabia; Department of Forensic Medicine and Clinical Toxicology, Mansoura University, Egypt.

Background: Vanadium (VAN) is a significant trace element, but its higher exposure is reported to cause severe organ toxicity. Tectochrysin (TEC) is a naturally derived flavonoid which demonstrates a wide range of pharmacological properties.

Aim: The current study was planned to assess the cardioprotective potential of TEC against VAN induced cardiotoxicity in rats via regulating biochemical, and histological profile.

View Article and Find Full Text PDF

Puerarin pretreatment provides protection against myocardial ischemia/reperfusion injury via inhibiting excessive autophagy and apoptosis by modulation of HES1.

Sci Rep

January 2025

Department of Cardiovascular Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, 17 Yongwai Road, Nanchang, 330006, Jiangxi, China.

The study aimed to elucidate the underlying pharmacological mechanism of the traditional Chinese medicine Pue in ameliorating myocardial ischemia-reperfusion injury (MIRI), a critical clinical challenge exacerbated by reperfusion therapy. In vivo MIRI and in vitro anoxia/reoxygenation (A/R) models were constructed. The results demonstrated that Pue pretreatment effectively alleviated MIRI, as manifested by diminishing the levels of serum CK-MB and LDH, mitigating the extent of myocardial infarction and enhancing cardiac functionality.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!